首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1985年   1篇
排序方式: 共有22条查询结果,搜索用时 328 毫秒
21.
EmTFP250 is a high molecular mass, asexual stage antigen from Eimeria maxima strongly associated with maternally derived immunity to this protozoan parasite in hatchling chickens. Cloning and sequence analysis has predicted the antigen to be a novel member of the thrombospondin-related anonymous protein (TRAP) family of apicomplexan parasites. Members of the TRAP family are microneme proteins and are associated with host cell invasion and apicomplexan gliding motility. In order to assess the immunogenicity of EmTFP250, a C-terminal derivative encoding a low complex, hydrophilic region and putative transmembrane domain/cytosolic tail was expressed in a bacterial host system. The recombinant protein was used to immunise mice and chickens and found to induce strong IgG responses in both animal models as determined by specific ELISAs. Using Western blotting, protective maternal IgG antibodies previously shown to recognise native EmTFP250 recognised the recombinant protein and, in addition, antibodies raised against the recombinant protein were shown to recognise native EmTFP250. Localisation studies employing immuno-light microscopy and immuno-electron microscopy showed that antibodies to the recombinant protein specifically labeled micronemes within merozoites of E. maxima. Furthermore, antibodies to the recombinant EmTFP250 derivative showed similar labeling of micronemes within merozoites of Eimeria tenella. This study is further suggestive of a functional importance for EmTFP250 and underscores its potential as a candidate for a recombinant vaccine targeting coccidiosis in chickens.  相似文献   
22.
Apicomplexan parasites including Toxoplasma gondii cause widespread human and animal diseases, often with the most severe manifestations involving the central nervous system. The need for new therapeutic agents along with the fascinating biology of these parasites has fueled a keen interest in understanding how key steps in the life cycle are regulated. Proteolysis is intimately associated with cell and tissue invasion by these obligate intracellular parasites and recent studies have begun to identify the proteases involved in these processes. Based on clues from inhibitor experiments and cleavage site mapping studies, several groups are using emerging genome information, chemical proteomics and molecular genetics to identify and validate proteases that regulate secretory organelle biogenesis and invasion protein activity. These studies are revealing roles for an assortment of proteases including cathepsins, subtilases and rhomboids in cell and tissue invasion. The identification of highly selective inhibitors for these proteases has the potential to not only further dissect their roles in infection but also to ameliorate disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号