首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2060篇
  免费   49篇
  国内免费   352篇
  2024年   3篇
  2023年   22篇
  2022年   53篇
  2021年   51篇
  2020年   94篇
  2019年   84篇
  2018年   57篇
  2017年   63篇
  2016年   64篇
  2015年   61篇
  2014年   112篇
  2013年   139篇
  2012年   75篇
  2011年   209篇
  2010年   57篇
  2009年   175篇
  2008年   167篇
  2007年   131篇
  2006年   99篇
  2005年   99篇
  2004年   95篇
  2003年   78篇
  2002年   55篇
  2001年   35篇
  2000年   34篇
  1999年   42篇
  1998年   25篇
  1997年   31篇
  1996年   27篇
  1995年   26篇
  1994年   22篇
  1993年   21篇
  1992年   20篇
  1991年   20篇
  1990年   6篇
  1989年   17篇
  1988年   11篇
  1987年   17篇
  1986年   9篇
  1985年   12篇
  1984年   20篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2461条查询结果,搜索用时 46 毫秒
151.
The bi-component leukocidins of Staphylococcus aureus are important virulence factors that lyse human phagocytic cells and contribute to immune evasion. The γ-hemolysins (HlgAB and HlgCB) and Panton-Valentine leukocidin (PVL or LukSF) were shown to assemble from soluble subunits into membrane-bound oligomers on the surface of target cells, creating barrel-like pore structures that lead to cell lysis. LukGH is the most distantly related member of this toxin family, sharing only 30–40% amino acid sequence identity with the others. We observed that, unlike other leukocidin subunits, recombinant LukH and LukG had low solubility and were unable to bind to target cells, unless both components were present. Using biolayer interferometry and intrinsic tryptophan fluorescence we detected binding of LukH to LukG in solution with an affinity in the low nanomolar range and dynamic light scattering measurements confirmed formation of a heterodimer. We elucidated the structure of LukGH by x-ray crystallography at 2.8-Å resolution. This revealed an octameric structure that strongly resembles that reported for HlgAB, but with important structural differences. Structure guided mutagenesis studies demonstrated that three salt bridges, not found in other bi-component leukocidins, are essential for dimer formation in solution and receptor binding. We detected weak binding of LukH, but not LukG, to the cellular receptor CD11b by biolayer interferometry, suggesting that in common with other members of this toxin family, the S-component has the primary contact role with the receptor. These new insights provide the basis for novel strategies to counteract this powerful toxin and Staphylococcus aureus pathogenesis.  相似文献   
152.
Soil biological variables are considered good soil quality indicators due to their high sensitivity and ability to reflect soil management effects. However, they frequently show high temporal variability. Our objectives were: (a) to analyze temporal stability and seasonal effect on biological variables, (b) to choose between autumn and spring to sample for soil biological variables, and (c) to determine biological variables able to discriminate among selected soil subgroups. Areas with minimal human disturbance were sampled in three soil orders (Mollisol, Vertisol and Alfisol) during two and a half years, each autumn and spring. Microbial biomass C and N (MBC, MBN), basal respiration (Resp), metabolic quotient (qCO2), potential of N mineralization (PNM-AI), soil organic C (TOC) and total soil N (TON) were measured in three composite soil samples collected from homogeneous areas at 0–15 cm depth. For the studied soils, selected soil biological variables presented different levels depending on the time of sampling, spring or autumn. Hence, the importance of pointing out the time of sampling to report results of these variables in this kind of studies is remarked. In general, biological variables presented higher stability when we sampled soils in autumn compared to spring. Because of this, we used autumn soil samples to determine the best soil biological variables to discriminate among selected subgroups of soils. The separation of soil subgroups by means of discriminant analysis using just TOC and TON was scrutinized, considering that these soil variables are routinely measured in soil test laboratories. Nonetheless they were not able to discriminate properly among soil subgroups because they showed high error rates classifying the samples in the correct subgroups. In contrast, the variables PMN-AI, MBC, and MBN adequately discriminated the five soil subgroups. From the biological variables, PMN-AI and MBC were the best ones to characterize (discriminate) among the five soil subgroups. Particularly, PMN-AI was able to separate soils by their suitability for agricultural purposes.  相似文献   
153.

Background

Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.

Results

NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.

Conclusions

The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.  相似文献   
154.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.  相似文献   
155.
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.  相似文献   
156.
Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC - upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDS L−1 d−1 (salt solution volume) or 5.25 g TDS L−1 d−1 (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4 d. The UMDC produced a maximum power density of 30.8 W/m3. The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.  相似文献   
157.
Zhu F  Wang W  Zhang X  Tao G 《Bioresource technology》2011,102(15):7324-7328
A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m2. Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density.  相似文献   
158.
Yang X  Wang J  Zhao X  Wang Q  Xue R 《Bioresource technology》2011,102(22):10535-10541
A fungal consortium-SR consisting of Trametes sp. SQ01 and Chaetomium sp. R01 was developed for decolorizing three kinds of triphenylmethane dyes, which were decolorized by individual fungi with low efficiencies. The fungal consortium-SR produced 1.3 U ml(-1) of manganese peroxidase, 5.5 times higher than that produced by the monoculture of Trametes sp. SQ01, and decolorized Crystal Violet, Coomassie Brilliant Blue G250 (CBB G250) and Cresol Red. The fungal consortium-SR had a decolorization rate of 63-96%, much higher than that of the monoculture of strain SQ01 (38-72%). In consortium-SR, the higher efficiencies of decolorization of Crystal Violet and CBB G250 were obtained when they added to the culture after 4d of mixed cultivation rather than at the beginning of cultivation. Cresol Red was the exception. It is suggested that the consortium-SR has great potential for decolorizing triphenylmethane dyes.  相似文献   
159.
Huang L  Gan L  Zhao Q  Logan BE  Lu H  Chen G 《Bioresource technology》2011,102(19):8762-8768
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided.  相似文献   
160.
The aeration of the cathode compartment of bioelectrochemical systems (BESs) was recently shown to promote simultaneous nitrification and denitrification (SND). This study investigates the cathodic metabolism under different operating conditions as well as the structural organization of the cathodic biofilm during SND. Results show that a maximal nitrogen removal efficiency of 86.9 ± 0.5%, and a removal rate of 3.39 ± 0.08 mg N L−1 h−1 could be achieved at a dissolved oxygen (DO) level of 5.73 ± 0.03 mg L−1 in the catholyte. The DO levels used in this study are higher than the thresholds previously reported as detrimental for denitrification. Analysis of the cathodic half-cell potential during batch tests suggested the existence of an oxygen gradient within the biofilm while performing SND. FISH analysis corroborated this finding revealing that the structure of the biofilm included an outer layer occupied by putative nitrifying organisms, and an inner layer where putative denitrifying organisms were most dominant. To our best knowledge this is the first time that nitrifying and denitrifying microorganisms are simultaneously observed in a cathodic biofilm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号