首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1808篇
  免费   36篇
  国内免费   340篇
  2023年   14篇
  2022年   27篇
  2021年   33篇
  2020年   87篇
  2019年   68篇
  2018年   50篇
  2017年   53篇
  2016年   56篇
  2015年   53篇
  2014年   95篇
  2013年   131篇
  2012年   64篇
  2011年   204篇
  2010年   50篇
  2009年   162篇
  2008年   159篇
  2007年   121篇
  2006年   92篇
  2005年   88篇
  2004年   83篇
  2003年   72篇
  2002年   45篇
  2001年   30篇
  2000年   28篇
  1999年   40篇
  1998年   23篇
  1997年   30篇
  1996年   24篇
  1995年   26篇
  1994年   22篇
  1993年   19篇
  1992年   17篇
  1991年   20篇
  1990年   5篇
  1989年   13篇
  1988年   8篇
  1987年   16篇
  1986年   8篇
  1985年   12篇
  1984年   18篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2184条查询结果,搜索用时 937 毫秒
31.
32.
Abstract: Changes in hydrocarbon content in soils resulted in characteristic shifts of the substrate utilization patterns as tested with the Biolog system. The altered patterns of substrate utilization corresponded to similar changes in abundance of hydrocarbon-utilizing bacteria and the occurrence of specific bacterial groups in the soils. Substrate utilization patterns as recorded with the Biolog system are suitable for rapidly assessing dynamics of autochthonous soil communities and evaluating their biodegradative potential.  相似文献   
33.
Microbial mineralization of organic phosphate in soil   总被引:35,自引:0,他引:35  
Summary Phosphate-dissolving microorganisms were isolated from non-rhizosphere and rhizosphere of plants. These isolates included bacteria, fungi and actinomycetes. In broth cultures, Gram-negative short rod,Bacillus andStreptomyces species were found to be more active in solubilizing phosphate thanAspergillus, Penicillium, Proteus, Serratia, Pseudomonas andMicrococcus spp. The sterile soils mixed with isolated pure culture showed slower mineralization of organic phosphate than that of non-sterile soil samples at all incubation periods. Maximum amount of phosphate mineralization by isolated microorganisms were obtained at the 60th and the 75th day of incubation in sterile and non-sterile soils respectively. The mixed cultures were most effective in mineralizing organic phosphate and individuallyBacillus sp. could be ranked next to mixed cultures. Species ofPseudomonas andMicrococcus were almost the same as that of the control under both sterile and non-sterile conditions.  相似文献   
34.
Summary Field studies to determine the effect of zero and shallow (10 cm) cultivation on microbial biomass were conducted on several Chernozemic soils in western Canada. Using the CHCl3 fumigation method, the distribution of microbial biomass N and the immobilization and subsequent release of added15N (15N-urea) from the microbial biomass were determined in the A horizon, at the 0 to 5 and 5 to 10 cm depth, during the growing season for spring wheat.Temporal variation in microbial biomass N, associated with the development of the rhizosphere, was characterized by an increase between Feekes stage 1 and 5 or 10 and decrease at Feekes stage 11.4. Over the long term, the variation in biomass N between tillage systems corresponded with crop residue distribution. Immobilization of fertilizer N was related to the increase in biomass N from Feekes stage 1, which in turn, was associated with the incorporation of recent crop residues or levels of labile organic matter in the surface soil. The study demonstrated the relatively rapid remineralization of immobilized fertilizer N under field conditions and emphasized the role of the microbial biomass N as both a sink and source of mineral N.  相似文献   
35.
The biological transformation of P in soil   总被引:5,自引:0,他引:5  
K. R. Tate 《Plant and Soil》1984,76(1-3):245-256
Summary Organic forms of soil phosphorus (Po) are an important source of available P for plants following mineralisation. The rates and pathways of P through soil organic matter are, however, poorly understood when compared to physco-chemical aspects of the P cycle. The essential role of soil microorganisms as a labile resercoir of P, confirmed experimentally and in modelling studies, has recently led to the development of methods for measuring thier P content. Incorporation in a new P fractionation scheme of these measurements with estimates of Pi and Po fractions that vary in the exten toftheir availability to plants has enabled the dynamics of short-term soil P transformations to be investigated in relation to long-term changes observed in the field.Different types of soil P compounds that minearlise at different rates can now be measured directly in extracts by31P-nuclear magnetic resonance. Orthophosphate diesters, including phospholipids and nucleic acids, are the most readily mineralised group of these compounds. However, mineralisation rates rather than the amounts of types of Po in soil ultimately control P availability to plants. These rates are influenced by a number of soil and site factors, as a sensitive new technique using [32P] RNA has recently shown.These recent developments reflect a more holistic approach to investigation of the soil P cycle than in the past, which should lead to improved fertilizer management practices.Introductory lecture  相似文献   
36.
Summary The effects of disturbing (cultivating) and stockpiling prairie grassland topsoil on microbial activity, microbial biomass C, plant production and decomposition potentials were studied by measuring CO2 efflux from unamended and glucose amended soil in the laboratory and by conducting a pot and litter bag study in the greenhouse. Stockpiling appeared to have very little effect on soil respiratory activity, but did reduce the microbial biomass C levels. Throughout the 3 year study the microbial biomass C in the surface soil of the stockpile was less than that in the undisturbed soil, while the biomass C in soil at the bottom of the stockpile was at no time significantly different from that in the undisturbed soil. The reduction in microbial biomass C in the surface soil immediately after stockpiling was attributed to a decrease in the soil organic C levels caused by a slight dilution of the topsoil with subsurface mineral soil, and the exposure of the stockpile surface to extreme environmental conditions. Soils from all depths of the stockpile responded more slowly to the addition of glucose than soil from the undisturbed and cultivated treatments even when no differences in biomass were detected between the undisturbed and stockpiled soils. It is postulated that the rapidity with which the soil microbial biomass responds to glucose additions may be a sensitive indicator of stress on the soil biological components. The reduction in biomass after storage for 1 year had no adverse effects on the decomposition or primary production potential of the stored soil. Rather, shoot production by fall rye was stimulated in the stored topsoil, presumably a result of better N nutrition.  相似文献   
37.
Summary Thirty two bacteria antagonistic to a number of phytopathogenic fungi were isolated from soil samples. One bacterial strain, designated as M 51, appeared to be particularly active towardsF. oxysporum f. sp.dianthii, in vitro andin vivo and it was inhibitoryin vitro to three otherFusarium spp. used. Tests to find if there was protection against fusarium wilt were carried out by three different methods of inoculation of the cuttings: a) dipping of cuttings for ten minutes in bacterial suspension; b) spraying of suspension on perlite where the rooted cuttings were planted; c) spraying the greenhouse bench rooting boxes, where the non-rooted cuttings were planted, with bacterial suspension. Following this all the cuttings were transplanted into soil naturally highly infested withFusarium oxysporum f. sp.dianthii (3000 units/g). Good protection against fusarium wilt was obtained for cuttings inoculated by method (b). However protection decreased gradually about 60 days after they were transplanted; both control and inoculated cuttings showed a comparable mortality rate. Method of inoculation and the development of the protective effect are discussed.  相似文献   
38.
Mineralization dynamics in fallow dryland wheat plots,Colorado   总被引:2,自引:0,他引:2  
Summary There was a flush of mineralization in fallow wheat plots in the wet and warm summer of 1982 at Akron, Colorado. Peak mineralization rates and concentrations of N and P coincided with a 2.5-fold increase in protozoan biomass. No-till contained considerably more activity than stubble mulch plots, especially in the surface 2.5 cm and there was more water storage in no-till on all dates. Differential management of agricultural residues and the resultant effects upon the microbial community significantly altered patterns of nutrient cycling.  相似文献   
39.
Abstract Hydrogenase activity was characterized in cell extracts of Propionispira arboris that consumed or produced H2, coupled to methyl viologen reduction, and displayed highest levels (2.6 μmol/min/mg protein) in extracts prepared from fumarate-grown cells. Reversible hydrogenase activity in cell extracts correlated with the production of low levels of hydrogen during the growth phase and its subsequent consumption during the stationary phase of cells grown on glucose or lactate as the carbon and energy source. The addition of exogenous hydrogen to glucose, lactate or fumarate-grown cells dramatically increased propionate production at the expense of acetate formation. This accounted for the formation of propionate as nearly the sole end product of glucose fermentation under two atmospheres of hydrogen. The physiological function of hydrogenase in regulation of carbon and electron flow, and the significance of the results in applied and environmental microbiology are discussed.  相似文献   
40.
The applicability of flow-microfluorometer to separate microbial cells was demonstrated with algal and bacterial cells. Algal mixtures were sorted according to the natural chlorophyll fluorescence and the bacterial mixtures were sorted according to the fluorescence of ethidium bromide-stained nucleic acid.Abbreviation FMF Flow-microfluorometer  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号