首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1811篇
  免费   36篇
  国内免费   340篇
  2023年   14篇
  2022年   30篇
  2021年   33篇
  2020年   87篇
  2019年   68篇
  2018年   50篇
  2017年   53篇
  2016年   56篇
  2015年   53篇
  2014年   95篇
  2013年   131篇
  2012年   64篇
  2011年   204篇
  2010年   50篇
  2009年   162篇
  2008年   159篇
  2007年   121篇
  2006年   92篇
  2005年   88篇
  2004年   83篇
  2003年   72篇
  2002年   45篇
  2001年   30篇
  2000年   28篇
  1999年   40篇
  1998年   23篇
  1997年   30篇
  1996年   24篇
  1995年   26篇
  1994年   22篇
  1993年   19篇
  1992年   17篇
  1991年   20篇
  1990年   5篇
  1989年   13篇
  1988年   8篇
  1987年   16篇
  1986年   8篇
  1985年   12篇
  1984年   18篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2187条查询结果,搜索用时 15 毫秒
191.
The optimization and the scale up of industrial fermentation processes require an efficient and possibly comprehensive analysis of the physiology of the production system throughout the process development. Furthermore, to ensure a good quality control of established bioprocesses, on-line analysis techniques for the determination of marker gene expression are of interest to monitor the productivity and the safety of bioprocesses. A prerequisite for such analyses is the knowledge of genes, the expression of which is critical either for the productivity or for the performance of the bioprocess. This work reviews marker genes that are specific indicators for stress- and nutrient-limitation conditions or for the physiological status of the bacterial production hosts Bacillus subtilis, Bacillus licheniformis and Escherichia coli. The suitability of existing gene expression analysis techniques for bioprocess monitoring is discussed. Analytical approaches that enable a robust and sensitive determination of selected marker mRNAs or proteins are presented.  相似文献   
192.
The Guild Decomposition Model (GDM) hypothesized that temporal shifts in microbial “guilds,” each with distinct substrate preferences, drive decomposition dynamics and regulate soil carbon (C) losses and sequestration. To test this hypothesis, we established a laboratory incubation of Acer saccharum litter and monitored respiration, microbial biomass and enzyme activities, inorganic nutrients and shifts in functional groups of decomposers using phospholipid fatty acid (PLFA) analysis. Biomass and respiration peaked within the first 2 d of incubation, and the Gram negative PLFA biomarker 18:1ω7c predominated during the first 5 d. Hydrolytic enzyme activities and two fungal biomarkers (18:2ω6,9c and 18:3ω6c) increased by 25 d and lignolytic enzyme activity was detected at 68 d. Our results suggest that decomposers preferentially use labile substrates and that shifts in decomposer groups occur in response to changes in available substrates, which supports the GDM.  相似文献   
193.
194.
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated community. We examined whether physical associations exist between individual bacterial and fungal species that co-occur on decaying smooth cordgrass, Spartina alterniflora, in a south-eastern US salt marsh. Fungal-pervaded decaying Spartina was used as "bait" for potential bacterial associates. The bundles (infiltrated with one of three dominant fungal members of the decomposer assemblage, or an autoclaved control) were placed in a salt marsh and collected biweekly for 6 weeks during the first experiment (late summer 2002), and weekly for 3 weeks during the second experiment (early summer 2003). Terminal-restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to track colonization by bacterial taxa in association with the established fungal species. T-RFLP analysis of 18S-to-28S internal transcribed spacer (ITS) regions was used to monitor changes in fungal communities once bundles had been placed in the field. Results from both years were nearly identical, and showed that invasion by fungi other than the bait species was slow, resulting in a virtual fungal monoculture for several weeks into the experiments. Surprisingly, bacterial communities were unaffected by the identity of the fungal bait. Regardless of the fungal species, and even in the absence of prior fungal colonization, bacterial 16S rRNA profiles were remarkably similar. These results suggest that few species-specific associations, either positive or negative, exist between bacterial and fungal members of the Spartina decomposer community during initial colonization.  相似文献   
195.
The present study compares the retention of four species that are often isolated in association with biomedical device-related infections - Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans - to three different surfaces. All four bacterial species were found to bind significantly less well to MPC-coated surfaces than to non-coated surfaces. We attribute this effect to the "superhydrophilicity" of MPC-coated surfaces, whereas hydrophobic surfaces are well known to reduce bacterial retention and thus to inhibit a crucial step in the formation of bacterial biofilms that lead to biomedical device-related infections and complications.  相似文献   
196.
Choudhary MI  Sultan S  Khan MT  Rahman AU 《Steroids》2005,70(12):798-802
The microbial transformation of the 17alpha-ethynyl-17beta-hydroxyandrost-4-en-3-one (1) (ethisterone) and 17alpha-ethyl-17beta-hydroxyandrost-4-en-3-one (2) by the fungi Cephalosporium aphidicola and Cunninghamella elegans were investigated. Incubation of compound 1 with C. aphidicola afforded oxidized derivative, 17alpha-ethynyl-17beta-hydroxyandrosta-1,4-dien-3-one (3), while with C. elegans afforded a new hydroxy derivative, 17alpha-ethynyl-11alpha,17beta-dihydroxyandrost-4-en-3-one (4). On the other hand, the incubation of compound 2 with the fungus C. aphidicola afforded 17alpha-ethyl-17beta-hydroxyandrosta-1,4-dien-3-one (5). Two new hydroxylated derivatives, 17alpha-ethyl-11alpha,17beta-dihydroxyandrost-4-en-3-one (6) and 17alpha-ethyl-6alpha,17beta-dihydroxy-5alpha-androstan-3-one (7) were obtained from the incubation of compound 2 with C. elegans. Compounds 1-6 exhibited tyrosinase inhibitory activity, with compound 6 being the most potent member (IC(50)=1.72 microM).  相似文献   
197.
To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.  相似文献   
198.
Continental Antarctic is perceived as a largely pristine environment, although certain localized regions (e.g., parts of the Ross Dependency Dry Valleys) are relatively heavy impacted by human activities. The procedures imposed on Antarctic field parties for the handling and disposal of both solid and liquid wastes are designed to minimise eutrofication and contamination (particularly by human enteric bacteria). However, little consideration has been given to the significance, if any, of less obvious forms of microbial contamination resulting from periodic human activities in Antarctica. The predominant commensal microorganism on human skin, Staphylococcus epidermidis, could be detected by PCR, in Dry Valley mineral soils collected from heavily impacted areas, but could not be detected in Dry Valley mineral soils collected from low impact and pristine areas. Cell viability of this non-enteric human commensal is rapidly lost in Dry Valley mineral soil. However, S. epidermidis can persist for long periods in Dry Valley mineral soil as non-viable cells and/or naked DNA.  相似文献   
199.
From Metchnikoff to Monsanto and beyond: the path of microbial control   总被引:2,自引:0,他引:2  
In 125 years since Metchnikoff proposed the use of Metarhizium anisopliae to control the wheat cockchafer and brought about the first field trials, microbial control has progressed from the application of naturalists' observations to biotechnology and precision delivery. This review highlights major milestones in its evolution and presents a perspective on its current direction. Fungal pathogens, the most eye-catching agents, dominated the early period, but major mycological control efforts for chinch bugs and citrus pests in the US had questionable success, and interest waned. The discoveries of Bacillus popilliae and Bacillus thuringiensis began the era of practical and commercially viable microbial control. A program to control the Japanese beetle in the US led to the discovery of both B. popilliae and Steinernema glaseri, the first nematode used as a microbial control agent. Viral insect control became practical in the latter half of the 20th century, and the first registration was obtained with the Heliothis nuclear polyhedrosis virus in 1975. Now strategies are shifting for microbial control. While Bt transgenic crops are now planted on millions of hectares, the successes of more narrowly defined microbial control are mainly in small niches. Commercial enthusiasm for traditional microbial control agents has been unsteady in recent years. The prospects of microbial insecticide use on vast areas of major crops are now viewed more realistically. Regulatory constraints, activist resistance, benign and efficacious chemicals, and limited research funding all drive changes in focus. Emphasis is shifting to monitoring, conservation, integration with chemical pesticides, and selection of favorable venues such as organic agriculture and countries that have low costs, mild regulatory climates, modest chemical inputs, and small scale farming.  相似文献   
200.
The growth of mixed microbial cultures on mixtures of substrates is a problem of fundamental biological interest. In the last two decades, several unstructured models of mixed-substrate growth have been studied. It is well known, however, that the growth patterns in mixed-substrate environments are dictated by the enzymes that catalyse the transport of substrates into the cell. We have shown previously that a model taking due account of transport enzymes captures and explains all the observed patterns of growth of a single species on two substitutable substrates (J. Theor. Biol. 190 (1998) 241). Here, we extend the model to study the steady states of growth of two species on two substitutable substrates. The model is analysed to determine the conditions for existence and stability of the various steady states. Simulations are performed to determine the flow rates and feed concentrations at which both species coexist. We show that if the interaction between the two species is purely competitive, then at any given flow rate, coexistence is possible only if the ratio of the two feed concentrations lies within a certain interval; excessive supply of either one of the two substrates leads to annihilation of one of the species. This result simplifies the construction of the operating diagram for purely competing species. This is because the two-dimensional surface that bounds the flow rates and feed concentrations at which both species coexist has a particularly simple geometry: It is completely determined by only two coordinates, the flow rate and the ratio of the two feed concentrations. We also study commensalistic interactions between the two species by assuming that one of the species excretes a product that can support the growth of the other species. We show that such interactions enhance the coexistence region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号