首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   14篇
  国内免费   9篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   11篇
  2016年   6篇
  2015年   8篇
  2014年   16篇
  2013年   20篇
  2012年   14篇
  2011年   63篇
  2010年   9篇
  2009年   18篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   11篇
  2002年   6篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
241.
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.  相似文献   
242.
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.  相似文献   
243.
Cadmium is one of the most toxic substances found in aquatic ecosystems. This metal tends to accumulate in photosynthetic plants and fish and is transferred to humans causing many diseases. It has to be removed from our environment to reduce any health risks. Dry biomass of the microalga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of cadmium ions (Cd2+) from aqueous solutions. The effects of different levels of pH (3–9), biomass concentration (0.25–2 g), temperature (18–46 °C), metal concentration (40–200 mg/l) and contact time (30–120 min) were tested. Batch cultures were carried out in triplicate in an orbital shaker at 150 rpm. After centrifuging the biomass, the remaining levels of cadmium ions were measured in the supernatant by Atomic Absorption Spectrometer. Very high levels of removal, reaching up to 87.69% were obtained. The highest percentage of removal was reached at pH 8, 2 g of biosorbent, 26 °C, and 60 mg/l of cadmium concentration after 90 min of contact time. Langmuir and Freundlich isotherm models were applied to describe the adsorption isotherm of the metal ions by S. platensis. Langmuir model was found to be in better correlation with experimental data (R2 = 0.92). Results of this study indicated that S. platensis is a very good candidate for the removal of heavy metals from aquatic environments. The process is feasible, reliable and eco-friendly.  相似文献   
244.
The ammonia and phosphorus removal efficiencies of the microalgae Chlorella vulgaris and Scenedesmus dimorphus, during biotreatment of secondary effluent from an agroindustrial wastewater of a dairy industry and pig farming, were evaluated. The microalgae were isolated from a wastewater stabilization pond near Santafé de Bogotá, Colombia. Batch cultures were made using both species in 4-1 cylindrical glass bioreactors each containing 2l of culture. Chlorella vulgaris was also cultivated on wastewater in a triangular bioreactor. Three 216-h experimental cycles were run for each microalga and in each bioreactor. In the cylindrical bioreactor, S. dimorphus was more efficient in removing ammonia than C. vulgaris. However, the final efficiency of both microalgae at the end of each cycle was similar. Both microalgae removed phosphorus from the wastewater to the same extent in a cylindrical bioreactor. Using C. vulgaris, the triangular bioreactor was superior for removing ammonia and the cylindrical bioreactor was superior for removing phosphorus. This study shows the potential of using these microalgae to reduce the environmental pollution of heavily contaminated agroindustrial waters currently disposed of untreated into the waterways and streams of tropical Colombia.  相似文献   
245.
为获得能适合于烟道气条件下生长的微藻,找到一种高效的温室气体固定的方法,利用配置烟道气(CO2和O2的浓度分别为15%和2%)驯化稻田微藻混合试样,分离出对高浓度CO2条件有很强适应力的微藻ZY-1,并研究了在不同培养条件下微藻ZY-1的生长情况.微藻ZY-1在CO2浓度从10%~15%的范围内有较高生长力,在CO2浓度为10%时,生长最好.微藻ZY-1对温度、气体流速、pH值等物理条件也有很宽的适应范围,在温度为25~30.C、流速为0.25~0.75L·min-1、pH4~6范围内,生长基本稳定.在培养条件为10%CO2、25.C、pH5.0时,微藻ZY-1的生长率最高,CO2的固定率平均值为0.397%.可以认为,利用该藻固定烟道气温室气体具有一定的可行性.  相似文献   
246.
Online monitoring and controlling of different cellular parameters are key issues in aerobic bioprocesses. Since mixotrophic cultivation, in which we observe a mixture of cellular respiration and oxygen production has gained more popularity, there is a need for an on‐process quantification of these parameters. The presented and adapted double gassing‐out method applied to a mixotrophic cultivation of Galdieria sulphuraria , will be a tool for monitoring and further optimization of algal fermentation in nonstirred photobioreactors (PBR). We measured the highest net specific oxygen production rate (opr net) as 5.73 · 10?3 molO2 g?1 h?1 at the lowest oxygen uptake rate (OUR) of 1.00 · 10?4 molO2 L?1 h?1. Due to higher cell densities, we also demonstrated the increasing shading effect by a decrease of opr net, reaching the lowest value of 1.25 10?5 molO2 g?1 h?1. Nevertheless, with this on process measurement, we can predict the relation between the zone in which oxygen is net produced to the area where cell respiration dominates in a PBR, which has a major impact to optimize cell growth along with the formation of different products of interest such as pigments.  相似文献   
247.
The influence of episodic, sediment resuspension on phytoplankton abundance/volume and composition, the photosynthetic maximum rate (PB max) and efficiency (B), and chlorophyll-specific growth (Chl) was evaluated during the spring isothermal period in southern Lake Michigan (Laurentian Great Lakes, USA). Resuspension altered the nutrient and light climate of nearshore waters; light attenuation (Kd) and phosphorus concentrations corresponded (p 0.0001 and p 0.001, respectively) with concentrations of suspended particulate matter (SPM). Phytoplankton cell volume and diatom cell abundance and volume were not associated with SPM concentrations (p > 0.05). Diatom composition displayed spatial dissimilarities corresponding with resuspension (p 0.001); small centric diatoms exhibiting meroplanktonic life histories and pennate diatoms considered benthic in origin were most abundant within SPM-impacted, nearshore waters whereas taxa typically comprising assemblages in optically-clear, offshore waters and the basin-wide, spring bloom were not. Values of PB max and B corresponded (p 0.0001) with both Kd coefficients and SPM concentrations, potentially reflecting increased light harvesting/utilization within impacted assemblages. However, integral production was inversely associated with Kd coefficients and SPM concentrations (p < 0.0001) and photosynthesis was light-limited (or nearly so) for most assemblages. Although Chl values corresponded with Kd coefficients (p 0.05), values were quite low (x ± S.E., 0.10 ± 0.004 d-1) throughout the study. Most likely, distinct rate processes between SPM- and non-impacted assemblages reflected short-term compositional (and corresponding physiological) variations due to infusion of meroplankton and/or tributary-derived phytoplankton. Overall, resuspension appears to have little, if any, long-term impact upon the structure and function of the lakes phytoplankton.  相似文献   
248.
Recovery of microalgal biomass and metabolites: process options and economics   总被引:25,自引:0,他引:25  
Commercial production of intracellular microalgal metabolites requires the following: (1) large-scale monoseptic production of the appropriate microalgal biomass; (2) recovery of the biomass from a relatively dilute broth; (3) extraction of the metabolite from the biomass; and (4) purification of the crude extract. This review examines the options available for recovery of the biomass and the intracellular metabolites from the biomass. Economics of monoseptic production of microalgae in photobioreactors and the downstream recovery of metabolites are discussed using eicosapentaenoic acid (EPA) recovery as a representative case study.  相似文献   
249.
Wang SB  Chen F  Sommerfeld M  Hu Q 《Proteomics》2005,5(18):4839-4851
The green alga Haematococcus pluvialis has a plant-like cell wall consisting of glycoproteins and cellulose that is modified during the cell cycle and under various conditions. These features allow Haematococcus to be used as a model organism for studying cell wall biology. Development of the Haematococcus model is hampered by the absence of mutants that could provide insight into the biosynthesis and assembly of wall components. Haematococcus mutants (WM#537 and WM#2978) (WM--wall mutant) with defective cell walls were obtained by chemical mutagenesis. WM#537 features a secondary wall of considerably reduced thickness, whereas WM#2978 possesses a somewhat reduced secondary wall with little intervening space between the wall and plasmalemma. 2-DE revealed that a majority of the cell wall proteins were present in the wild-type and mutant cell walls throughout the cell cycle. PMF identified 55 wall protein orthologs from these strains, including a subset of induced proteins known to be involved in wall construction, remodeling, and defense. Down-regulation of certain wall proteins in the two mutants was associated with the wall defects, whereas overexpression of other proteins may have compensated for the defective walls in the two mutants.  相似文献   
250.
2-Hydroxy acids were believed to be absent in algae until this study, in which the analysis of microalgae belonging to Chlorophyta (Chlamydomonas reinhardtii and Chlorella pyrenoidosa), Rhodophyta (Cyanidium caldarium M-8 and Cyanidium caldarium RK-1) and Cyanophyta (Anbaena variabilis, Anacystis nidulans, Oscillatoria species and Phormidium foveolarum) is reported. 2-Hydroxy adds with carbon chain lengths of C16-C26, were found in all the algal samples studied, ranging in concentrations from 4.0 to 320μg/g dry alga. The dominant constituents are 2-hydroxyhexadecanoic, 2-hydroxynonadecanoic, 2-hydroxyhexacosanoic and a branched 2-hydroxy-C19 acid. The distribution patterns of the acids differed significantly among the algal samples. Hence 2-hydroxy acids may be useful for the classification of algal species as well as being an important source of 2-hydroxy acids in the natural environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号