首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   9篇
  国内免费   11篇
  2023年   2篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   12篇
  2013年   12篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   13篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   12篇
  1983年   7篇
  1982年   18篇
  1981年   7篇
  1980年   7篇
  1979年   16篇
  1978年   4篇
  1977年   5篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
11.
12.
13.
The protonization pattern of the endogenous donor component D1 which feeds electrons directly into chl-a+II has been analyzed in Tris-washed inside-out thylakoids with the aid of appropriate pH-indicators. It was found that under repetitive flash excitation the amount of protons released is proportional to the extent of D1-oxidation, depending on the time between the flashes. The kinetics of D1-oxidation (being practically the same as in normal Tris-washed chloroplasts) are faster than the proton release by two orders of magnitude. The results lead to the conclusion that D1 is protonized in the reduced state with pK(Dox1) < 5 and becomes deprotonized in the oxidized state with pK(Dred1) ? 8. The proton release is kinetically limited by a transport barrier. Implications on the interpretation of the proton release pattern in preparation with intact water oxidation are discussed.  相似文献   
14.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   
15.
The flavin analogue 5-deazariboflavin is a convenient catalyst for the photoreduction of low-potential redox compounds. In an anaerobic medium with Tricine buffer as the electron donor, 5-deazariboflavin is capable of photoreducing both ferredoxin and methyl viologen. We have used this method to conduct a comparative study of the Photosystem I photophosphorylation activities supported by the reduced forms of ferredoxin, methyl viologen and anthraquinone sulfonate. All of these catalysts are capable of generating high rates (200–500 μmol ATP/h per mg chlorophyll) of cyclic photophosphorylation, but only the activity dependent on ferredoxin exhibits sensitivity to antimycin A. This finding suggests that the size of the catalyst and its ability to approach the thylakoid membrane, rather than low-redox potential, governs antimycin A sensitivity. Ferredoxin-catalyzed activity is, however, less sensitive to inhibition by dibromothymoquinone than are the activities supported by methyl viologen and anthraquinone sulfonate. This discrepancy is due to binding of the inhibitor by ferredoxin.  相似文献   
16.
Soybean leghemoglobins ā and b?were compared by microscale peptide mapping after heme removal with acid-acetone. Maps generated by trypsin or the combined action of trypsin and thermolysin indicated a large amount of homology between the proteins with the only variations detected being the N-terminal peptides. The N-terminal tryptic peptide of leghemoglobin b? was found to be both blocked and to lack the first amino acid of the corresponding leghemoglobin ā peptide. Nuclear magnetic resonance and gas chromatography/mass spectroscopy studies showed that the N-terminal of leghemoglobin b? was N-acetyl-alanine. It is possible that leghemoglobin b? arises from leghemoglobin ā by a two-stage modification involving cleavage of the N-terminal valyl residue and subsequent acetylation of the exposed alanyl residue.  相似文献   
17.
18.
Phosphate transport across the chloroplast envelope is rapidly inactivated by the amino-group reagent 2,4,6-trinitrobenzene sulfonate. Subsequent exposure to [3H]NaBH4 leads to an incorporation of the trinitrophenyl moiety into envelope membrane preparations. From the membrane proteins only a polypeptide with 29000 dalton molecular weight is labelled. The inactivation of phosphate transport and the incorporation of radioactivity are both specifically reduced by the presence of substrates.The results lead to the conclusion that a polypeptide with a molecular weight of 29000 dalton and containing a lysyl residue at the substrate binding site is involved in the phosphate translocator function.  相似文献   
19.
Using a substrate-stimulated amino acid efflux system, it has been shown that the “Ly+” and “L” amino acid transport systems of mouse embryo cells in culture are differentially inhibited by parachloromercuribenzene sulfonate (PCMB-S) and the photoaffinity probe 4-fluoro-3-nitrophenylazide (FNPA). Three types of evidence support the conclusion that these transport systems are mediated by separate carrier proteins. (1) The specificity of substrate-stimulated efflux is high for each system; (2) PCMB-S inhibits l-phenylalanine and l-leucine stimulated l-[3H]phenylalanine efflux with no effect on l-lysine stimulated l-[3H]lysine efflux, and (3) the photoaffinity probe FNPA inhibits l-lysine efflux with little effect on the l-phenylalanine-stimulated efflux.  相似文献   
20.
Synopsis Fathead minnow embryos (Pimephales promelas Rafinesque) of 5 different developmental ages (5, 33, 48, 72 and 96 hrs after fertilization) were used as controls and exposed for 2 hrs to a solution of 0.25 Ci ml–1 of3H-Uridine. Another set of embryos (5, 33, 48, 72 and 96 hrs after fertilization) were subjected to the same treatment except that during the one hour immediately preceding the3H-Uridine incubation, the control embryos were placed in water while the experimental embryos were placed in water containing 15 ppm 11.2 LAS. In both cases, radiation counts minute–1 embryo–1 and per milligram of embryo increased over the 4 day developmental period. The embryos with LAS treatment displayed lower radiation counts at all ages as compared to controls, indicating an inhibition of diffusion and uptake of3H-Uridine and/or RNA synthesis. The possible mechanism of LAS is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号