首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6216篇
  免费   718篇
  国内免费   591篇
  2024年   32篇
  2023年   208篇
  2022年   271篇
  2021年   445篇
  2020年   492篇
  2019年   636篇
  2018年   396篇
  2017年   236篇
  2016年   281篇
  2015年   266篇
  2014年   387篇
  2013年   461篇
  2012年   270篇
  2011年   318篇
  2010年   211篇
  2009年   258篇
  2008年   261篇
  2007年   262篇
  2006年   219篇
  2005年   225篇
  2004年   184篇
  2003年   171篇
  2002年   143篇
  2001年   74篇
  2000年   68篇
  1999年   74篇
  1998年   65篇
  1997年   57篇
  1996年   55篇
  1995年   46篇
  1994年   41篇
  1993年   48篇
  1992年   32篇
  1991年   27篇
  1990年   33篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   25篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有7525条查询结果,搜索用时 15 毫秒
101.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
102.
The disulfide bond assignments of human alanyl tissue factor pathway inhibitor purified fromEscherichia coli have been determined. This inhibitor of the extrinsic blood coagulation pathway possesses three Kunitz-type inhibitor domains, each containing three disulfide bonds. The disulfide bond pairings in domains 1 and 3 were determined by amino acid sequencing and mass spectrometry of peptides derived from a thermolysin digest. However, thermolysin digestion did not cleave any peptide bonds within domain 2. The disulfide bond pairings in domain 2 were determined by isolating it from the thermolysin treatment and subsequently cleaving it with pepsin and trypsin into peptides which yielded the three disulfide bond pairings in this domain. These results demonstrate that the disulfide pairings in each of the three domains of human tissue factor pathway inhibitor purified fromEscherichia coli are homologous to each other and also to those in bovine pancreatic trypsin inhibitor.  相似文献   
103.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   
104.
Poly(A) polymerase is responsible for the addition of the adenylate tail to the 3′ ends of mRNA. Using the two-hybrid system, we have identified two proteins which interact specifically with the Saccharomyces cerevisiae poly(A) polymerase, Pap1. Uba2 is a homolog of ubiquitin-activating (E1) enzymes and Ufd1 is a protein whose function is probably also linked to the ubiquitin-mediated protein degradation pathway. These two proteins interact with Pap1 and with each other, but not with eight other target proteins which were tested in the two-hybrid system. The last 115 amino acids of Uba2, which contains an 82-amino acid region not present in previously characterized E1 enzymes, is sufficient for the interaction with Pap1. Both Uba2 and Ufd1 can be co-immunoprecipitated from extracts with Pap1, confirming in vitro the interaction identified by two-hybrid analysis. Depletion of Uba2 from cells produces extracts which polyadenylate precursor RNA with increased efficiency compared to extracts from nondepleted cells, while depletion of Ufd1 yields extracts which are defective in processing. These two proteins are not components of polyadenylation factors, and instead may have a role in regulating poly(A) polymerase activity. Received: 6 January 1997 / Accepted: 27 February 1997  相似文献   
105.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   
106.
107.
A new approach to the design of conceptually and phenomenologically new herbicides is described. It involves the joint utilization of tetrapyrrole precursors, such as δ-aminolaevulinic acid (a biodegradable amino acid) and activators of the chlorophyll biosynthetic pathway, such as 2,2′-dipyridyl, in order to induce treated plants to biosynthesize and accumulate massive amounts of tetrapyrrole intermediates of the chlorophyll biosynthetic pathway in the dark (i.e. at night). During the subsequent light period (daylight) the accumulated tetrapyrroles act as potent photodynamic sensitiziers, which in turn result in the death of susceptible plants in a matter of hours. We have therefore proposed to name herbicides that act via this mechanism as photodynamic herbicides, or more pictorially as laser herbicides. From a limited survey of agricultural plant and weed species it appears that photodynamic herbicides exhibit a very pronounced organ, age and species-dependent selectivity. For example, dicotyledonous weeds such as mustard, red-root pigweed, common purslane and lambsquarter are very susceptible while monocotyledonous plants such as corn, wheat, barley and oats are not. The biochemical basis of this selectivity seems to lie, among other things, in the rates of tetrapyrrole turnover and in a differential enhancement by the applied chemicals of the monovinyl and divinyl tetrapyrrole biosynthetic pathways in the various species. A survey of various groups of chemicals (herbicides and other selected biochemicals) that are likely to exhibit photodynamic herbicidal properties is currently under investigation.  相似文献   
108.
Characterization of a new marine methylotroph   总被引:1,自引:0,他引:1  
Abstract A methanol-oxidizing bacterium from a marine environment has been isolated and characterized. The bacterium was a Gram-negative rod, capable of growth on methanol and methylamine, but not on multicarbon compounds. It showed a temperature optimum of 30°C, a salt optimum of 0.4% (w/v) and the mol % G + C of its DNA was 46%. Carbon was assimilated via the ribulose monophosphate pathway for formaldehyde fixation during growth on methanol. This bacterium superficially resembled other obligate methylotrophs requiring NaCl reported previously which were designated Methylomonas thalassica . It also appeared similar to many strains of obligate freshwater methylotrophs, except for its NaCl requirement and its lower mol % G + C.  相似文献   
109.
水稻雄核发育途径及游离花粉粒培养的活体观察   总被引:1,自引:0,他引:1  
(1)在水稻雄核发育中,观察到 A—V、A—G、A—GV 和 B 途径,通常 B 途径占优势。在雄核发育早期,各种发育途径的花粉均有退化现象发生。(2)观察和统计表明,游离核型的多核花粉在发育过程中可转变为多细胞花粉,因而也是有发育前途的。(3)能够启动雄核发育的花粉通常是原生质稠密,在花粉群体中属中等大小(35—40μ)的花粉。多细胞花粉在突破花粉壁前。其细胞壁常常加厚,破壁时整个花粉有突然收缩的现象。(4)多细胞花粉内通常含有一些缓慢运动的小淀粉粒,它们可能积极参与了花粉雄核发育过程中的代谢活动。  相似文献   
110.
H. Stabenau  W. Säftel 《Planta》1982,154(2):165-167
Microbodies of the algaMougeotia were isolated in a linear sucrose gradient. The organelles, which moved to the density 1.24 g cm–3, contained about 70% of the glycolate oxidase (EC 1.1.3.1) found in this alga. The enzyme oxidized glycolate, utilizing either oxygen or 2,6-dichlorophenolindophenol (DCPIP) as the electron acceptor. L-Lactate was an alternate substrate; almost no D-lactate was utilized. In the presence of O2, a Km of 415 M was determined for glycolate, whereas the Km for L-lactate was about 5,000 M. In the presence of DCPIP, lower concentrations of glycolate and L-lactate were sufficient to obtain the highest rates of enzyme activity.Abbreviations DCPIP 2,6-dichlorophenolindophenol Supported by the Deutsche Forschungsgemeinschaft  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号