首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   10篇
  国内免费   19篇
  627篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   4篇
  2016年   8篇
  2015年   14篇
  2014年   21篇
  2013年   25篇
  2012年   13篇
  2011年   26篇
  2010年   18篇
  2009年   39篇
  2008年   42篇
  2007年   49篇
  2006年   29篇
  2005年   30篇
  2004年   35篇
  2003年   28篇
  2002年   27篇
  2001年   12篇
  2000年   7篇
  1999年   18篇
  1998年   22篇
  1997年   13篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   10篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   9篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   6篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
181.
Methyl parathion hydrolase (MPH) has been displayed on the surface of microorganisms for the first time using only N- and C-terminal domains of the ice nucleation protein (INPNC) from Pseudomonas syringae INA5 as an anchoring motif. A shuttle vector pINCM coding for INPNC-MPH was constructed and used to target MPH onto the surface of a natural p-nitrophenol (PNP) degrader, Pseudomonas putida JS444, overcoming the potential substrate uptake limitation. Over 90% of the MPH activity was located on the cell surface as determined by protease accessibility and cell fractionation experiments. The surface localization of the INPNC-MPH fusion was further verified by Western blot analysis and immunofluorescence microscopy. The engineered P. putida JS444 degraded organophosphates as well as PNP rapidly without growth inhibition. Compared to organophosphorus hydrolase-displaying systems reported, changes in substrate specificity highlight an important potential use of the engineered strain for the clean-up of specific organophosphate nerve agents.  相似文献   
182.
NMR spectroscopy combined with principal component analysis was applied to Arabidopsis thaliana treated with methyl jasmonate in order to obtain macroscopic metabolic changes caused by the treatment. As the first step several chromatographic and NMR spectroscopic techniques were utilized to identify metabolites of Arabidopsis. Sephadex LH-20 showed a high efficiency in the separation of phenolic metabolites in the plant. For identification of minor metabolites two-dimensional J-resolved NMR technique was directly applied to the plant extract and results in a number of elucidation of the metabolites of which signals overlap in 1H NMR spectra. The chemical structure of the identified metabolites were confirmed by various two-dimensional NMR spectroscopy including correlated spectroscopy, heteronuclear single quantum coherence, and heternuclear multiple bond correlation. As next step, a statistical approach, principal component analysis based on projected J-resolved NMR spectra was performed for metabolic alteration of methyl jasmonate-treated Arabidopsis. The results show that methyl jasmonate caused an increase of flavonoids, fumaric acid, sinapoyl malate, sinigrin, tryptophan, valine, threonine, and alanine and a decrease of malic acid, feruloyl malate, glutamine, and carbohydrates after 24 h treatment.  相似文献   
183.
Yang J  Yang C  Jiang H  Qiao C 《Biodegradation》2008,19(6):831-839
The coding region of mpd gene corresponding to mature methyl parathion hydrolase (MPH) was heterologously overexpressed in Escherichia coli BL21 (DE3) by using pET expression system. The lactose-induced expression yield of MPH is increased 2-fold compared with IPTG as inducer. Furthermore, it was found that specific activity of MPH increased 48% by reducing the induction temperature to 22°C. The addition of 25 mM lactose at 22°C, the MPH activity of fermentation broth had a specific activity of 1.4 × 104 U/mg protein. Plasmid was no significant decrease in the modified medium. The optimal pH and temperature of MPH were 8.0 and 30°C, respectively. Over a period of 5 months, the dried cells showed no significant decrease in the activity of the detoxifying enzymes. The crude enzymes in 50 mM citrate-phosphate buffer (pH 8.0) were able to degrade about 98% of the organophosphate pesticides sprayed on cabbage. The detoxification efficiency was superior to that of the treatments of water, detergent, and a commercially available enzyme product. Additionally, the products of pesticide hydrolysis generated by treatment with the enzyme extract were determined to be virtually nontoxic.  相似文献   
184.
Kaul S  Sharma SS  Mehta IK 《Amino acids》2008,34(2):315-320
Summary. An assessment of the potential of proline to scavenge free radicals was made in a couple of in vitro assay systems, namely graft co-polymerization and autooxidation of pyrogallol. Both these assays are essentially dependent upon free radical mechanisms. Graft co-polymerization involved a ceric (Ce4+) ion- or γ-radiation-induced grafting of methyl acrylate (MA) onto a cellulose backbone. The degree of grafting, measured gravimetrically, was taken as a measure of free radical generation. The γ-radiation-dependent grafting was far greater than that due to Ce4+ ions. Inclusion of proline in the assay, irrespective of the initiator used, led to suppression of grafting in a concentration-dependent manner indicating the ability of proline to scavenge free radicals. The γ-radiation-dependent grafting was also suppressed by hydroquinone and glutathione but not by ascorbate, glycine and spermine. In contrast to graft co-polymerization, proline did not inhibit the autooxidation of pyrogallol, a reaction involving superoxide radical generation. A subset of data constitutes an evidence for the ability of proline to scavenge free radicals in vitro. It is implied by extension that free proline, known to accumulate in plant tissues during abiotic stresses, would contribute to scavenging of surplus free radicals produced under a variety of abiotic stresses. Authors’ address: Shanti S. Sharma, Department of Biosciences, Himachal Pradesh University, Shimla 171 005, India  相似文献   
185.
186.
Abstract

Synergy occurs when chemicals give pronounced effect on combination in contrast to their individual effect. The objective of this study was to investigate the synergistic effect of pesticides carbaryl (C) and methyl parathion (MP) on oxidative stress biomarkers viz catalase (CAT), glutathione reductase (GSSG-R) including different enzymes like lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and acetyl cholinesterase (AChE) in different tissues of carps Catla catla. Fishes were exposed to 6.25?mg/L of MP and 2.3?mg/L of C in mixture (one-third of LC50 value). CAT and GSSG-R were studied in gills, brain, liver and muscle of carp were found to be elevated significantly (p?<?0.005). LDH activity increased significantly (p?<?0.005) in synergistic group, there was a seven-fold (748%) increase in LDH activity in muscle compared to individual studies with same pesticides. Contrary to LDH, sudden decrease in SDH activity was accounted. Significant (p?<?0.005) decrease in AChE activity after initial 24?h was remarkable addressing to the shift in neurotransmission pathway in organism. Significant increase was observed in activity of CAT and GSSG-R in all tissues compared to control fishes in individual as well as synergistic (MP?+?C) group suggesting that CAT and GSSG-R can be a potential biomarker of oxidative stress when studied in combination.  相似文献   
187.
Kumar H  Kaul K  Bajpai-Gupta S  Kaul VK  Kumar S 《Gene》2012,492(1):276-284
Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA3) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway.  相似文献   
188.
A new route for biodiesel production using methyl acetate instead of methanol as the acyl acceptor was proposed in our previous research, and it has been found that this novel route could enhance the stability of the immobilized lipase greatly. In this paper, the kinetics of lipase-catalyzed interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor was further studied. First, a simplified model based on Ping Pong Bi Bi with substrate competitive inhibition mechanism was proposed to describe the reaction kinetics of the interesterification. During our further study, it was observed that three consecutive and reversible reactions occurred in the interesterification of triglycerides and methyl acetate. So, a kinetic model based on mass balance of three second-order reversible reactions was developed and the reaction rate constant, k, was determined by solving the differential rate equations of the reaction system. The results showed that kDG–MG (0.1124) and kMG–TA (0.1129) were much higher than kTG–DG (0.0311), which indicated that the first step reaction was the limit step for the overall interesterification.  相似文献   
189.
The conformational and hydration properties of the two disaccharides methyl β-cellobioside and methyl β-laminarabioside were investigated by NMR spectroscopy and explicit solvation molecular dynamics simulations using the carbohydrate solution force field (CSFF). Adiabatic maps produced with this force field displayed 4 minima A: (Φ = 300°, Ψ = 280°), B: (Φ = 280°, Ψ = 210°), C: (Φ = 260°, Ψ = 60°), and D: (Φ = 60°, Ψ = 260°) for methyl β-cellobioside and 3 minima A: (Φ = 290°, Ψ = 130°), B: (Φ = 270°, Ψ = 290°), and C: (Φ = 60°, Ψ = 120°) for methyl β-laminarabioside. Molecular dynamics simulations were initiated from all minima. For each disaccharide, the simulation started from the A minimum was conducted for 50 ns, while the other minima were explored for 10 ns. The simulations revealed two stable minima for both compounds. For methyl β-cellobioside, the simulation minima in aqueous solution were shifted from their adiabatic map counterparts, while the simulation minima for methyl β-laminarabioside coincided with the corresponding adiabatic map minima. To validate the simulation results, NMR-derived NOEs and coupling constants across the glycoside linkage, 3JHC and 3JCH, were compared with values calculated from the MD trajectories. For each disaccharide, the best agreement was obtained for the simulations started at the A minimum. For both compounds, inter-ring water bridges in combination with the direct hydrogen bonds between the same groups were found to be determining factors for the overall solution structure of the disaccharides which differed from solid-state structures. Comparison with helical parameters showed that the preferred glycosidic dihedral configurations in the methyl β-cellobioside simulation were not highly compatible with the structure of cellulose, but that curdlan helix structures agreed relatively well with the methyl β-laminarabioside simulation. Polymers generated using glycosidic dihedral angles from the simulations revealed secondary structure motifs that that may help to elucidate polymer associations and small-molecule binding.  相似文献   
190.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号