首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   4篇
  国内免费   4篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   12篇
  2014年   17篇
  2013年   20篇
  2012年   20篇
  2011年   13篇
  2010年   13篇
  2009年   17篇
  2008年   22篇
  2007年   20篇
  2006年   19篇
  2005年   11篇
  2004年   12篇
  2003年   15篇
  2002年   11篇
  2001年   10篇
  2000年   8篇
  1999年   9篇
  1998年   8篇
  1997年   11篇
  1996年   10篇
  1995年   12篇
  1994年   15篇
  1993年   10篇
  1992年   16篇
  1991年   12篇
  1990年   9篇
  1989年   12篇
  1988年   13篇
  1987年   17篇
  1986年   10篇
  1985年   21篇
  1984年   13篇
  1983年   22篇
  1982年   25篇
  1981年   17篇
  1980年   12篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
排序方式: 共有561条查询结果,搜索用时 740 毫秒
61.
Or-Rashid MM  Onodera R  Wadud S 《Amino acids》2003,24(1-2):135-139
Summary.  An in vitro experiment was conducted to test the ability of mixed rumen bacteria (B), protozoa (P), and their mixture (BP) to utilize the oxidized forms of methionine (Met) e.g., methionine sulfoxide (MSO), methionine sulfone (MSO2). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39°C for 12 h with or without MSO (1 mM) or MSO2 (1 mM) as a substrate. Met and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by HPLC. During 6- and 12-h incubation periods, MSO disappeared by 28.3 and 42.0%, 0.0 and 0.0%, and 40.6 and 62.4% in B, P, and BP suspensions, respectively. Rumen bacteria and the mixture of rumen bacteria and protozoa were capable to reduce MSO to Met, and the production of Met from MSO in BP (156.6 and 196.1 μmol/g MN) was about 17.3 and 14.1% higher than that in B alone (133.5 and 171.9 μmol/g MN) during 6- and 12-h incubations, respectively. On the other hand, mixed rumen protozoa were unable to utilize MSO. Other metabolites produced from MSO were found to be MSO2 and 2-aminobutyric acid (2AB) in B and BP. MSO2 as a substrate remained without diminution in all-microbial suspensions. It was concluded that B, P, and BP cannot utilize MSO2; but MSO can be utilized by B and BP for producing Met. Received December 28, 2001 Accepted May 21, 2002 Published online October 14, 2002 Acknowledgements The authors are extremely grateful to Professor H. Ogawa, the University of Tokyo, Japan and Dr. Takashi Hasegawa, Miyazaki University, Japan for inserting permanent rumen fistulae in goats. We would like to thank MONBUSHO for the award of a research scholarship to Mamun M. Or-Rashid since 1996–2001. Authors' address: Shaila Wadud, Laboratory of Animal Nutrition and Biochemistry, Division of Animal Science, Miyazaki University, Miyazaki 889-2192, Japan, Fax. +81-985-58-7201, E-mail: rafatkun@hotmail.com  相似文献   
62.
The relationship between plasma levels of homocysteine (Hcy) and femur bone mineral density (BMD) was studied in Wistar rats. After 8 weeks of treatment with 0.5 and 1.0 g kg−1 day−1 l-methionine the mean plasma levels of Hcy were 7.67 ± 1.25 and 61.2 ± 11.4 μmol/l, respectively. Only rats treated with the higher dose had Hcy levels significantly higher than those of controls, 6.38 ± 0.90 μmol/l (p < 0.001). Dual Energy X-ray Absorptiometry was used to measure the BMD, which was significantly lower only in the animals with the highest plasma levels of Hcy (p < 0.001). This led us to conclude that increased levels of Hcy are associated with risk of decreased BMD.  相似文献   
63.
Methionine is an important amino acid involved in protein synthesis and transmethylation reactions. It is also the precursor of homocysteine and cysteine, two important risk factors for cardiovascular diseases. As homocysteine research has gained impulsion, the evaluation of plasma methionine concentrations has acquired importance. Methionine measurement generally has been performed by HPLC after o-phthalaldehyde derivatization. Its separation from other amino acids is time-consuming. We set up a new specific capillary electrophoresis method in which analyte derivatization was avoided by sample concentration before analysis. Methionine was detected by UV absorbance at 204 nm with a detection limit of 0.5 micromol/L. By a capillary with an effective length of 50 cm filled with 125 mmol/L Tris phosphate buffer at pH 2.3, the separation occurred in less than 14 min. Precision tests indicated a good test repeatability for both migration times (coefficient of variation [CV]<0.3%) and areas (CV<2.0%). Moreover, a good reproducibility of intraassay and interassay tests was obtained (CV<2.9% and CV<3.5%, respectively). The Passing-Bablok regression and the Bland-Altman test for methods comparison suggest that the data obtained by our method and by a reference HPLC assay are similar. Assay performance was evaluated measuring methionine concentrations in retinal venous occlusive disease.  相似文献   
64.
Acidophiles are typically isolated from sulfate-rich ecological niches yet the role of sulfur metabolism in their growth and survival is poorly defined. Studies of heterotrophically grown “Ferroplasma acidarmanus” showed that its growth requires a minimum of 100 mM of a sulfate-containing salt. Headspace gas analyses by GC/MS determined that the volatile sulfur compound emitted by active “F. acidarmanus” cultures is methanethiol. In “F. acidarmanus” cultures grown either heterotrophically or chemolithotrophically, methanethiol was produced constitutively. Radiotracer studies with 35S-labeled methionine, cysteine, and sulfate showed that all three were used in methanethiol production. Additionally, 3H-labeled methionine was incorporated into methanethiol and was probably used as a methyl-group donor. Methanethiol production in whole cell lysates supplied with SO32− indicated that NADPH-dependant sulfite reductase and methyltransferase activities were present. Cell lysates also contained enzymatic activity for methionine-γ-lyase that cleaved the side chain of either methionine to form methanethiol or cysteine to produce H2S. Since methanethiol was detected from the degradation of cysteine, it is likely that sulfide was methylated by a thiol methyltransferase. Collectively, these data demonstrate that “F. acidarmanus” produces methanethiol through the metabolism of methionine, cysteine, or sulfate. This is the first report of a methanethiol-producing acidophile, thus identifying a new contributor to the global sulfur cycle.  相似文献   
65.
The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of d- and l-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by l-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well.  相似文献   
66.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   
67.
Seven isoforms of 85 kDa polypeptides (p85) were identified as methionine synthase (MetE) homologs by partial aminoacid sequencing in tobacco pollen tube extracts. Immunocytochemistry data showed a localization of the antigen on the surface of tip-focussed post-Golgi secretory vesicles (SVs), that appear to be partially associated with microtubules (Mts). The chemical dissection of pollen tube high speed supernatant (HSS) showed that two distinct pools of MetE are present in pollen tubes, one being the more acidic isoforms sedimenting at 15S and the remaining at 4S after zonal centrifugation through a sucrose density gradient. The identification of the MetE within the pollen tube and its possible participation as methyl donor in a wide range of metabolic reactions, makes it a good subject for studies on pollen tube growth regulation.  相似文献   
68.
Soybean (Glycine max L. Merrill) somatic embryos have been useful for assaying seed-specific traits prior to plant recovery. Such traits could be assessed more accurately if somatic embryos more closely mimicked seed development. Amino acid supplements, carbon source, and abscisic acid and basal salt formulations were tested in an effort to modify existing soybean embryogenesis histodifferentiation/maturation media to further normalize the development of soybean somatic embryos. The resultant liquid medium, referred to as soybean histodifferentiation and maturation medium (SHaM), consists of FNL basal salts, 3% sucrose, 3% sorbitol, filter-sterilized 30 mM glutamine and 1 mM methionine. SHaM-derived somatic embryos are more similar to seed in terms of protein and fatty acid/lipid composition, and conversion ability, than somatic embryos obtained from traditional soybean histodifferentiation and maturation media.  相似文献   
69.
Human methionine adenosyltransferase 2β (MAT2β) encodes for two major splicing variants, V1 and V2, which are differentially expressed in normal tissues. Both variants are induced in human liver cancer and positively regulate growth. The aim of this work was to identify interacting proteins of V1 and V2. His-tagged V1 and V2 were overexpressed in Rosetta pLysS cells, purified, and used in a pulldown assay to identify interacting proteins from human colon cancer cell line RKO cell lysates. The eluted lysates were subjected to Western blot and in solution proteomic analyses. HuR, an mRNA-binding protein known to stabilize the mRNA of several cyclins, was identified to interact with V1 and V2. Immunoprecipitation and Western blotting confirmed their interaction in both liver and colon cancer cells. These variant proteins are located in both nucleus and cytoplasm in liver and colon cancer cells and, when overexpressed, increased the cytoplasmic HuR content. This led to increased expression of cyclin D1 and cyclin A, known targets of HuR. When endogenous expression of V1 or V2 is reduced by small interference RNA, cytoplasmic HuR content fell and the expression of these HuR target genes also decreased. Knockdown of cyclin D1 or cyclin A blunted, whereas knockdown of HuR largely prevented, the ability of V1 or V2 overexpression to induce growth. In conclusion, MAT2β variants reside mostly in the nucleus and regulate HuR subcellular content to affect cell proliferation.  相似文献   
70.
The reaction behavior of the antitumor active metallocene dihalide Cp2MoCl2 (Cp = η5-cyclopentadienyl) towards AcHis, AcHis(1-Me), AcHis(3-Me), His-Gly, AcHis-Gly-His, AcMet, Gly-Met-Gly and cyclo-Met-Met has been studied in solution at 2.5 ? pD ? 7.4 by using 1H NMR spectroscopy. The histidine-containing substrates were found to bind the Cp2Mo2+ unit through the terminal carboxylate group or through the N1 nitrogen of the imidazole ring, depending on the pD value. At physiological pH, coordination takes place exclusively at the imidazole ring with the percentage of Cp2Mo2+-His adducts in 1:1 mixtures being about 70%. By contrast, the thioether group in the side chain of methionine has a very low affinity for the Cp2Mo2+ group. Monodentate S-coordination could not be detected. For AcMet, binding through the carboxylate group was observed as the only coordination mode, while in the case of Gly-Met-Gly Mo-S interaction occurs in combination with carboxylate coordination leading to a S,O-macrochelate in low yield. Coordination to methionine peptides only takes place at pD ? 6, while at physiological pH interactions with the weak donor sites are not observed due to predominating dimerization of [Cp2Mo(H2O)(OH)]+ to [Cp2Mo(μ-OH)2MoCp2]2+. At c(Cl) = 100 mM competitive Cl coordination reduces the amount of carboxylate and S,O-coordination significantly, while imidazole coordination is not affected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号