首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   633篇
  免费   10篇
  国内免费   28篇
  671篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   14篇
  2017年   11篇
  2016年   7篇
  2015年   4篇
  2014年   31篇
  2013年   44篇
  2012年   32篇
  2011年   22篇
  2010年   15篇
  2009年   39篇
  2008年   41篇
  2007年   35篇
  2006年   30篇
  2005年   26篇
  2004年   44篇
  2003年   20篇
  2002年   28篇
  2001年   19篇
  2000年   22篇
  1999年   29篇
  1998年   32篇
  1997年   25篇
  1996年   20篇
  1995年   19篇
  1994年   19篇
  1993年   13篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有671条查询结果,搜索用时 15 毫秒
11.
放射污染区古菌分离及多样性分析   总被引:1,自引:0,他引:1  
刘琴  任敏  张利莉 《微生物学通报》2014,41(7):1308-1317
【目的】研究放射污染区古菌多样性。【方法】放射污染区采集土样,采用甘油-精氨酸培养基(GJ)、甘油-天冬氨酸培养基(C1)、海藻糖-肌酸培养基(B7)、甘露醇-丙氨酸培养基(Z5)、干酪素-甘露醇培养基(CMKA)、壳聚糖-天冬酰胺培养基(F6)、甘露醇-酸水解酪蛋白培养基(GW1)、CM培养基、HP培养基和KC培养基10种分离培养基,采用梯度稀释法对古菌进行分离,将分离获得的菌株经形态特征,16S rRNA基因片段扩增及限制性内切酶酶切,选取酶切图谱中存在差异性的条带进行测序,最终通过序列比对,聚类分析,获得不同种类的古菌资源。【结果】从该土样中共获得了256株古菌,最终筛选出71株不同类型的古菌,这71株古菌均属于广古菌门,盐杆菌纲,盐杆菌目,盐杆菌科,分布于盐陆生菌属(Haloterrigena)、纳白菌属(Natrialba)、盐球菌属(Halococcus)、盐红菌属(Halorubrum)、盐长寿菌属(Halovivax)、纳线菌属(Natrinema)、盐碱球菌属(Natronococcus)、盐二型菌属(Halobiforma)、盐惰菌属(Halopiger)、盐池栖菌属(Halostagnicola)、富盐菌属(Haloferax)11个属,26个种,其中31株菌的16S rRNA基因序列与已有效发表菌株的序列相似性小于98%,Haloterrigena为该土样的优势菌属。对于分离效果较好的F6培养基采用了梯度营养成分的稀释,最终获得了19株古菌,这些菌株相互之间存在一定的差异性。【结论】本次分离获得了大量的古菌,表明放射污染区存在着较为丰富的古菌资源,其中蕴藏着多种新的物种类型,具有较大的研究价值。  相似文献   
12.
Sponges accommodate a diverse group of microorganisms with varied metabolic capabilities. The bacterial associates of sponges are widely studied while our understanding of archaeal counterparts is scanty. In the present study, we report the archaeal associates of two sponges, Pseudoceratina purpurea (NCBI barcode: KX454492) and Cinachyra sp. (NCBI barcode: KX454495), found in the coral reef ecosystems of Gulf of Mannar, India. Archaea in the water column was predominated by members of class Halobacteria of Phylum Euryarchaeota (97%) followed by a minor fraction (3%) of Nitrosopumilus sp. of phylum Thaumarchaeota. Interestingly, Thaumarchaeota was identified as the sole archaeal population associated with the two sponges studied, among which Nitrosopumilus sp. occuppied 80 and 100% of the sequences in the clone library of P. purpurea and Cinachyra sp. respectively. Other archaea found in the P. purpurea were Nitrososphaera (10%) and unclassified ones (10%). The study identified Nitrosopumilus sp. as a unique symbiotic archaeon of sponges, P. purpurea and Cinachyra sp. The existence of host driven factors in selecting specific associates from a diverse group of archaea in the environment may need further investigations.  相似文献   
13.
Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea, while none was found in Nanoarchaeum. The identified TK1s have high identity to Gram-positive bacteria TK1s. The TK1s from archaea, Gram-positive bacteria and eukaryotes share the same common ancestor, while the TK1s from Gram-negative bacteria belong to a less-related subgroup. It seems that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell.  相似文献   
14.
The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤500?mg acetic acid L?1 before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.  相似文献   
15.
16.
Draining soil of the former Lake Texcoco, Mexico with pH > 10.0 and electrolytic conductivity (EC) > 100 dS m?1 for 17 years has reduced pH to 7.8 and EC to 0.68 dS m?1. Metagenomic DNA from the archaeal community was extracted directly from this soil and used as template to amplify the 16S ribosomal genes by PCR to construct gene libraries. Most of the cloned Archaea were related to mesophilic crenarchaeota and were not-yet-cultured. Sequence and phylogenetic analyses of these clones identified a group of Archaea with close affiliation to the ammonia-oxidizing Archaea. The cloned sequences from the drained soil diverged clearly from Haloarchaea found in the undrained soil from the lake.  相似文献   
17.
The steep biogeochemical gradients near deep sea hydrothermal vents provide various niches for microbial life. Here we present biosignatures of such organisms enclosed in a modern and an ancient hydrothermal sulfide deposit (Turtle Pits, Mid-Atlantic Ridge, Recent; Yaman Kasy, Russia, Silurian). In the modern sulfide we found high amounts of specific bacterial and archaeal biomarkers with δ13C values between ?8 and ?37‰ VPDB. Our data indicate the presence of thermophilic members of the autotrophic Aquificales using the reductive tricarboxylic acid (rTCA) cycle as well as of methanogenic and chemolithoheterotrophic Archaea. In the ancient sample, most potential biomarkers of thermophiles were obscured by compounds derived from allochthonous organic matter (OM), except for an acyclic C40 biphytane and its C39 breakdown product. Both samples contained high amounts of unresolved complex mixtures (UCM) of hydrocarbons. Apparently, OM in the sulfides had to withstand high thermal stress, indicated by highly mature hopanes, steranes, and cheilanthanes with up to 41 carbon atoms.  相似文献   
18.
Microorganisms play fundamental roles in the ecosystem of the Gulf of Mexico (GOM), yet their vertical distributions along the depth continuum of water column are not well known. In this study, we presented the 16S rDNA sequences and lipid profiles in the context of water chemistry to characterize the archaeal community structure above a gas hydrate mound (MC 118) in GOM. Our results showed that all archaeal sequences were related to unknown species of Crenarchaeota or Euryarchaeota. Phylogenetically, group II –β Euryarchaeota dominated the surface water and mid-depth (400-m) water (74% and 58% of total archaeal species, respectively) whereas the marine group I-γ Crenarchaeota dominated the bottom (869 m) water (61% of total archaeal species). Estimates of the Shannon index showed the highest diversity of planktonic Archaea at the 400 m depth. Glycerol dialkyl glycerol tetraether (GDGT) lipids were detected from the 400- and 869-m depths only and characterized by relatively high abundances of GDGT-5 (crenarchaeol) and GDGT-0. Our studies suggested a possible zonation of archaeal community in the water column, which did not seem to be affected by the possible venting of hydrocarbons from the hydrate location in GOM.  相似文献   
19.
Extremophilic archaeal communities living in serpentinized muds influenced by pH 12.5 deep-slab derived fluids were detected and their richness and relatedness assessed from across seven serpentinite mud volcanoes located along the Mariana forearc. In addition, samples from two near surface core sections (Holes D and E) at ODP Site 1200 from South Chamorro were subjected to SSU rDNA clone library and phylogenetic analysis resulting in the discovery of several novel operational taxonomic units (OTUs). Five dominant OTUs of Archaea from Hole 1200D and six dominant OTUs of Archaea from Hole 1200E were determined by groups having three or more clones. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed all of the dominant OTUs were detected within both clone libraries. Cluster analysis of the T-RFLP data revealed archaeal community structures from sites on Big Blue and Blue Moon to be analogous to the South Chamorro Hole 1200E site. These unique archaeal community fingerprints resulted from an abundance of potential methane-oxidizing and sulfate-reducing phylotypes. This study used deep-sea sediment coring techniques across seven different mud volcanoes along the entire Mariana forearc system. The discovery and detection of both novel Euryarchaeota and Marine Benthic Group B Crenarcheaota phylotypes could be efficacious archaeal indicator populations involved with anaerobic methane oxidation (AMO) and sulfate reduction fueled by deep subsurface serpentinization reactions.  相似文献   
20.
Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号