首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2017年   1篇
  2013年   5篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
71.
Studies on immunological relationships among Methanosarcina genus using immunofluorescence and immunoprecipitation showed that a common antigen can be extracted by shaking in aqueous phase. This antigen was purified from Methanosarcina mazei. The protein had a molecular weight of 283400 daltons with three subunits, =68000, =43200 and =30500. It contained nickel, coenzyme M and F430. Its biochemical characteristics identified this antigen as the component C of the methyl CoM reductase complex. But EPR study showed that the nickel was Ni(II). Biological activity was detectable neither by heterologous in vitro assay nor by the DTT assay. Immunogold labelling showed that the component C was located randomly in the cytoplasm in Methanosarcina species and in Methanothrix soehngenii. In addition, specific labelling was also observed outside of the heteropolysaccharidic envelopes probably due to the absorption of component C released by the lysis of some cells in the clumps.  相似文献   
72.
Abstract Membranes prepared from Methanosarcina barkeri cultured on acetate were examined for electron carriers using electron paramagnetic resonance (EPR) and optical spectroscopy. EPR analysis of membrane suspensions demonstrated multiple iron-sulfur centers of the 4Fe-4S type, a hihg-spin heme-like species and possibly rebredoxin. Optical spectroscopy demonstrated that a b -type cytochrome was reduced by molecular hydrogen and oxidized by methyl coenzyme M. A membrane-bound hydrogenase activity (14 μM · min−1 (mg protein)−1) was detected. This suggests a putative role for cytochrome b and hydrogenase in electron transfer and methyl-group reduction during aceticlastic methanogenesis.  相似文献   
73.
The acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex catalyzes the reversible cleavage and synthesis of acetyl-CoA in methanogens. This report of the enzyme complex in Archaeoglobus fulgidus demonstrates the existence of a functional ACDS complex in an organism that is not a methanogen. The A. fulgidus enzyme complex contained five subunits of 89, 72, 50, 49.5, and 18.5 kDa, and it catalyzed the overall synthesis of acetyl-CoA according to the following reaction: w CO2 + 2 Fdred(Fe2+) + 2 H+ + CH3– H4SPt + CoA ⇌ acetyl-CoA + H4SPt + 2 Fdox(Fe3+) + H2O where Fd is ferredoxin, and CH3–H4SPt and H4SPt denote N 5-methyl-tetrahydrosarcinapterin and tetrahydrosarcinapterin, respectively. Received: 27 October 1997 / Accepted: 29 January 1998  相似文献   
74.
The conversion of methyl-tetrahydromethanopterin to methylcoenzyme M inMethanosarcina barkeri is catalyzed by two enzymes: an enzyme with a bound corrinoid, which becomes methylated during the reaction and an enzyme which tranfers the methyl group from this corrinoid to coenzyme M. As in the similar methyltransfer reaction inMethanobacterium thermoautotrophicum the corrinoid enzyme inM. barkeri needs to be activated by H2 and ATP. ATP can be replaced by Ti(III)citrate or CO.  相似文献   
75.
The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.  相似文献   
76.
Neither muramic acid and glucosamine nor d-glutamic acid or other amino acids typical of peptidoglycan were found in cell walls of two strains of Methanosarcina barkeri. The main components are galactosamine, neutral sugars and uronic acids. Therefore, the structural component of the cell wall most likely consists of an acid heteropolysaccharide, resembling that of Halococcus morrhuae. It is, however, not sulfated.  相似文献   
77.
Cell extracts of Methanosarcina barkeri grown on methanol in media supplemented with molybdate exhibited a specific activity of formylmethanofuran dehydrogenase of approximately 1 U (1 mol/min)/mg protein. When the growth medium was supplemented with tungstate rather than with molybdate, the specific activity was only 0.04 U/mg. Despite this reduction in specific activity growth on methanol was not inhibited. An inhibition of both growth and synthesis of active formylmethanofuran dehydrogenase was observed, however, when H2 and CO2 were the energy substrates. The results indicate that, in contrast to Methanobacterium wolfei and Methanobacterium thermoautotrophicum, M. barkeri possesses only a molybdenum containing formylmethanofuran dehydrogenase and not in addition a tungsten isoenzyme.  相似文献   
78.
Methanosarcina barkeri is a strictly anaerobic, cytochrome-containing, methane-forming archaeon. We report here that the microorganism contains a catalase, which was purified and characterized. The enzyme with an apparent molecular mass of 190 kDa was shown to be composed of four identical subunits of apparent molecular mass of 54 kDa. The heme-containing enzyme did not exhibit peroxidase activity, which indicates that it is a monofunctional catalase. This is substantiated by the primary structure, which is related to that of other monofunctional catalases rather than to that of bifunctional catalase-peroxidases. The enzyme showed an [S]0.5V for H2O2 of 25 mM and an apparent V max of 200,000 U/mg; it was inhibited by azide ([I]0.5V = 1 μM) and cyanide ([I]0.5V = 5 μM) and inactivated by 1,2,4-aminotriazole. The activity was almost independent of the pH (between pH 4 and 10) and the temperature (between 15 °C and 55 °C). Comparison of the primary structure of monofunctional catalases revealed that the enzyme from M. barkeri is most closely related to the monofunctional catalase of Dictyostelium discoideum. Received: 29 December 1998 / Accepted: 1 March 1999  相似文献   
79.
Abstract Extracts of Methanosarcina barkeri strain Fasaro oxidized formaldehyde to CO2 with methyl-coenzyme M as the natural terminal electron acceptor resulting in methanogenesis. A combination of the artificial electron acceptors methylviologen and metronidazole could substitute for methyl-coenzyme M. The rate of formaldehyde oxidation was thereby increased. Taking advantage of this artificial electron acceptor system the role of cofactors in formaldehyde oxidation was investigated. Cofactor-free extract of M. barkeri did not catalyze the oxidation of formaldehyde. CO2 formation could be restored by the addition of tetrahydromethanopterin-b (H4MPT-b) and methanofuran-b (MFR-b) from M. barkeri . Other low molecular weight or heat-resistant compounds stimulating formaldehyde oxidation were not found. Formaldehyde oxidation seems, therefore, to proceed via H4 MPT-b and MFR-b-derivatives already shown to be involved in methanogenesis from H2+ CO2.  相似文献   
80.
Energy coupling between the A1 ATPase of archaea type A1AO ATP synthase and its integral membrane sub-complex AO occurs via the stalk part, formed by the subunits C, D and F. To provide a molecular basis of the energy coupling, we performed NMR studies. Here, we report the assignment of the subunit F. Shovanlal Gayen and Subramanian Vivekanandan contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号