首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   10篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
排序方式: 共有115条查询结果,搜索用时 480 毫秒
61.
Sulfide oxidation and product formation was studied in the cyanobacterium Microcoleus chtonoplastes. Anoxygenic photosynthesis was induced in the presence of sulfide and light. It was demonstrated that thiosulfate was the only product of the 3(3,4-dichlorophenyl)1,1-dimethylurea (DCMU)-insensitive photo-oxidation of sulfide. The affinity of this system for sulfide was shown to be very low.Oxygenic photosynthesis continued in the presence of sulfide. After an induction period of 3 h, oxygenic and anoxygenic photosynthesis were shown to be operating simultaneously.The ecological importance of sulfide oxidation and thiosulfate production by M. chtonoplastes is discussed in the context of laminated microbial ecosystems, where cyanobacteria and purple sulfur bacteria coexist.  相似文献   
62.
63.
Abstract Evidence shows the presence on the chromosome of Methanobacterium wolfei of a defective prophage which, by DNA-DNA hybridization, is closely related to the virulent archaeophage ψM1 of Methanobacterium thermoautotrophicum Marburg. Partial sequencing of a M. wolfei 16S rRNA gene and phylogenetic analysis indicated that this organism is more closely related to other representatives of the genus Methanobacterium than to M. thermoautotrophicum Marburg. The chromosomal region of M. wolfei encoding the putative prophage was found to be deleted for two non-contiguous segments of the phage ψM1 genome and thus encompassed only 80 to 90% of the ψM1 DNA. The prophage region was mapped to a 30 kb restriction fragment on the physical map of the M. wolfei chromosome. A randomly chosen DNA fragment was cloned from phage ψM1 DNA, as was its homologous counterpart from the chromosome of M. wolfei . The 126-bp region present in both clones exhibited 100% sequence identity.  相似文献   
64.
Abstract Cell-free extracts of Methanobacterium thermoautotrophicum (strain ΔH) converted the 8-OH-5-deazaflavin coenzyme F420 to factor 390, a 8-adenylyl derivative (F420-AMP). Activity was only observed upon exposure of the crude cell-free extract to oxygen. The ability to synthesize F390 was lost when crude cell-free extract was subsequently brought to an anaerobic reducing environment. The enzymatic reaction used ATP and oxidized coenzyme F420 as substrates and inorganic pyrophosphate was formed next to F390. GTP could be used instead of ATP resulting in a guanylylated derivative. The crude cell-free extract showed K m values of 154 μM for coenzyme F420 and 2.4 mM for ATP. A partially purified enzyme preparation exhibited a K eq of 0.32. In accordance, coenzyme F420 and ATP could be synthesized from F390 and PPi by the reverse reaction.  相似文献   
65.
With the completion of genome sequencing projects, there are a large number of proteins for which we have little or no functional information. Since protein function is closely related to three-dimensional conformation, structural proteomics is one avenue where the role of proteins with unknown function can be investigated. In the present structural project, the structure of MTH187 has been determined by solution-state NMR spectroscopy. This protein of 12.4 kDa is one of the 424 non-membrane proteins that were cloned and purified for the structural proteomic project of Methanobacterium thermoautotrophicum [Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Gerstein, M., Arrowsmith, C.H. and Edwards, A.M. (2000) Prog. Biophys. Mol. Biol., 73, 339–345]. Methanobacterium thermoautotrophicum is a thermophilic archaeon that grows optimally at 65 °C. A particular characteristic of this microorganism is its ability to generate methane from carbon dioxide and hydrogen [Smith, D.R., Doucette-Stamm, L.A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D., Reeve, J. N. et al. (1997) J. Bacteriol., 179, 7135–7155].Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Structure data have been deposited at PDB (1TE4) and NMR data at BMRB (5629).Olivier Julien and Isabelle Gignac - Both authors contributed equally to this work.  相似文献   
66.
The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family.  相似文献   
67.
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of α and β subunits and forms a “jellyfish-like” structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two α and two β subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of α (α1 and α2) and β subunits (β1 and β2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD β1 subunit at 1.9 Å resolution and its functional analysis. TsPFD β1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The β hairpin linkers of β1 subunits assemble to form a β barrel “body” around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the β1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric β1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD β1 subunits act as molecular chaperones in living cells of some archaea.  相似文献   
68.
MTH1880 is a hypothetical protein from Methanobacterium thermoautotrophicum, a target organism of structural genomics. The solution structure determined by NMR spectroscopy demonstrates a typical alpha + beta-fold found in many proteins with different functions. The molecular surface of the protein reveals a small, highly acidic pocket comprising loop B (Asp36, Asp37, Asp38), the end of beta2 (Glu39), and loop D (Ser57, Ser58, Ser61), indicating that the protein would have a possible cation binding site. The NMR resonances of several amino acids within the acidic binding pocket in MTH1880, shifted upon addition of calcium ion. This calcium binding motif and overall topology of MTH1880 differ from those of other calcium binding proteins. MTH1880 did not show a calcium-induced conformational change typical of calcium sensor proteins. Therefore, we propose that the MTH1880 protein contains a novel motif for calcium-specific binding, and may function as a calcium buffering protein.  相似文献   
69.
The pivotal role of acetyl coenzyme A in CO2 assimilation by autotrophic methanogenic bacteria has been demonstrated by pulse-labelling of growing Methanobacterium thermoautotrophicum with 14CO2. After very short incubation with 14CO2 (1.5 s) approximately 1% of label incorporated into the soluble cell fraction was contained in acetyl coenzyme A. The percentage distribution of 14C within acetyl CoA markedly decreased with time, which is indicative for acetyl CoA being an immediate 14CO2 fixation product. Label in the acetate molecule first appeared in the carboxyl carbon, but the methyl carbon became equally labelled within only 10 s. The acetyl CoA was compared with authentic material by various criterions and its cellular concentration was determined to be 52 M. This small cellular pool size of acetyl CoA as compared to e.g. alanine (6.4 mM) provides an explanation for the observed labelling kinetics. The data are fully consistent with autotrophic carbon assimilation via a total synthesis of acetyl coenzyme A from 2 CO2.Dedicated to Professor Dr. Gerhart Drews on occasion of his 60th birthday  相似文献   
70.
An autotrophic moderately alkaliphilic and thermophilic nonmotile rod-shaped methanogen was isolated from a biogas plant. The isolate grows only on H2+CO2 and requires yeast extract. Growth optimum is at 60°C with a generation time of 4 h. In the absence of substrates complete lysis occurs. The pH range for growth is 7.5–8.5. Growth was also observed at pH values above 9.0. The DNA base composition is 38.8 mol% G+C. According to its physiological properties the nameMethanobacterium thermoalcaliphilum is proposed.Abbreviations G+C Guanine+cytosine  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号