首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   3篇
  国内免费   19篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   17篇
  2012年   12篇
  2011年   14篇
  2010年   8篇
  2009年   19篇
  2008年   24篇
  2007年   23篇
  2006年   21篇
  2005年   14篇
  2004年   16篇
  2003年   20篇
  2002年   16篇
  2001年   11篇
  2000年   13篇
  1999年   15篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   10篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
排序方式: 共有372条查询结果,搜索用时 15 毫秒
221.
Metallothionein (MT) is a prominent metal-binding protein and in mammalian systems contains a two-domain βα motif, while in lower life forms MT often consists of only a single-domain structure. There are also unusual MTs from American oysters that consist of multiple domains (from one to four α domains). This report details the study of the As3+-metalation to two different concatenated triple β and α domain MTs using time-resolved electrospray ionization mass spectrometry (ESI MS). Analysis of kinetic ESI MS data show that ααα human MT and βββ human MT bind As3+ in a noncooperative manner and involves up to 11 sequential bimolecular reactions. We report the complete progress of the reactions for the As3+-metalation of both triple-domain MTs from zero and up to 9 (βββ) or 10 As3+ ions (ααα). The rate constants for the As3+-metalation are reported for both the βββ and ααα human MT. At room temperature (298 K) and pH 3.5, the sequential individual rate constants, kn (n = 1-9) for the As3+-metalation of βββhMT starting at k1βββ are 40, 36, 37, 26, 27, 17, 12, 6, and 1 M−1 s−1; while at room temperature (298 K) and pH 3.5, the sequential individual rate constants, kn (n = 1-10) for the As3+-metalation of αααhMT starting at k1ααα are 52, 45, 46, 42, 38, 36, 29, 25, 14, and 6 M−1 s−1. The trend in the rate constant values reported for these two triple-domain MT proteins supports our previous proposal that the rate constant values are proportionally related to the total number of equivalent binding sites. The rate of binding for the 1st As3+ is the fastest we have determined for any MT to date. Additionally, we propose that the data show for the first time for any MT species, that interdomain metalation occurs in the binding of the 10th and 11th As3+ to αααhMT.  相似文献   
222.
The monitoring of heavy metals is important if adverse effects on health are to be avoided. In humans, metallothionein (MT) has been used as a biomonitor for the assessment of cadmium (Cd). In the present study, subjects drawn from the population of Tarragona Province (NE Spain) were investigated. Urinary MT, zinc (Zn), and copper (Cu) concentrations, corrected for creatine concentrations, were determined in 625 samples from healthy subjects aged between 10 and 65 yr. Mean values of MT and Cu in females were higher than those in males, with levels of 29.5 (23.8) vs. 22.7 (24.9) μg MT/creatinine (p<0.001) and 4.8 (6.1) vs 3.4 (4.9) μg Cu/g creatinine (p<0.001). No differences between males and females were observed with respect to urinary Zn: 78.0 (66.4) vs 73.0 (85.5) μg/g creatinine, respectively (p=0.332). Significantly higher MT, Zn, and Cu values were observed in the females aged 15–19 yr and, in the age group of 50–54 yr, only in the Zn and Cu values, when compared with those in males. Significant positive correlations of MT vs Zn and Cu as well as correlations of Zn vs Cu levels were observed in both genders. The present findings confirm the proposed role of MT as a biomonitor of mineral status.  相似文献   
223.
224.
In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17kDa protein matched with the regulatory beta-subunit of calcineurin (Ca(2+)-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.  相似文献   
225.
Plant metallothioneins (MTs) differ from animal MTs by a peculiar sequence organization consisting of two short cysteine-rich terminal domains linked by a long cysteine-devoid spacer. The role of the plant MT domains in the protein structure and functionality is largely unknown. Here, we investigate the separate domain contribution to the in vivo binding of Zn and Cu and to confer metal tolerance to CUP1-null yeast cells of a plant type 2 MT (QsMT). For this purpose, we obtained three recombinant peptides that, respectively, correspond to the single N-terminal (N25) and C-terminal (C18) cysteine-rich domains of QsMT, and a chimera in which the spacer is replaced with a four-glycine bridge (N25-C18). The metal-peptide preparations recovered from Zn- or Cu-enriched cultures were characterized by ESI-MS, ICP-OES and CD and UV-vis spectroscopy and data compared to full length QsMT. Results are consistent with QsMT giving rise to homometallic Zn- or Cu-MT complexes according to a hairpin model in which the two Cys-rich domains interact to form a cluster. In this model the spacer region does not contribute to the metal coordination. However, our data from Zn-QsMT (but not from Cu-QsMT) support a fold of the spacer involving some interaction with the metal core. On the other hand, results from functional complementation assays in endogenous MT-defective yeast cells suggest that the spacer region may play a role in Cu-QsMT stability or subcellular localization. As a whole, our results provide the first insight into the structure/function relationship of plant MTs using the analysis of the separate domain abilities to bind physiological metals.  相似文献   
226.
Naturally occurring metallothionein (MT) is a metal binding protein, which binds to seven Zn2+ through 20 conserved cysteines and forms two metal binding clusters with a Zinc-Blende structure. We demonstrate that the MT, when substituting the Zn2+ ions by Mn2+ and Cd2+, exhibits magnetic hysteresis loop observable by SQUID from 10 to 330 K. The magnetic moment may have originated from the bridging effect of the sulfur atoms between the metal ions that leads to the alignment of the electron spins of the Mn2+ ions inside the clusters. The protein backbone may restrain the net spin moment of Mn2+ ions from thermal fluctuation. The modified magnetic-metallothionein is a novel approach to creating molecular magnets with operating temperatures up to 330 K.  相似文献   
227.
Metallothioneins (MTs) are cysteine-rich proteins involved in homeostasis of essential metals, detoxification of toxic metals and scavenging of free radicals. Scavenging of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was measured by means of ESR spectroscopy for two recombinant MTs from aquatic species: MT-10 from the sea mussel Mytilus galloprovincialis, and MT-A from the fish Oncorhyncus mykiss. Both the zinc- and the cadmium-loaded forms (Zn(7)-MTs and Cd(7)-MTs) were analysed, using the commercial MT-II (Zn(7)-MT-II and Cd(7)-MT-II, respectively) from rabbit liver as a reference. A decrease in the scavenging ability was observed for all the three MTs passing from the Zn- to the Cd-loaded forms, because of the higher stability of the Cd-mercapto complex. The Zn(7)-MTs from aquatic species were more effective in scavenging DPPH signal than the rabbit Zn(7)-MT-II (2.8 and 4-folds, respectively). Similar results were obtained also for the Cd(7)-MTs, thus confirming the stronger antioxidant power of MTs from aquatic organisms compared with the rabbit MT-II. Moreover, mussel MT-10 was more active in DPPH scavenging than fish MT-A. When the complete release of metals from MTs was obtained by lowering the pH to 3 or, alternatively, by adding the chelating agent diethylenetriaminepentaacetic acid (DTPA), an increase in the scavenging ability of MTs was observed.  相似文献   
228.
Phytoremediation is a process that utilizes plants to remove, transfer, stabilize, or destroy pollutants in soil, sediment, and groundwater. Plants used for such purposes have several requirements. Genetic engineering these plants could be an effective tool used to acquire features needed for such purposes within a substantial amount of time. This paper aims to utilize electrochemical techniques to analyze transgenic tobacco and, thus, to reveal their heavy metals phytoremediation potential. Total thiol and metallothionein (MT) quantities were determined in the control and transgenic tobacco plants. The total content of thiols in transgenic plants varied within the range of 561 to 1,671 μg g−1. Furthermore, the determination of MT was done on transgenic tobacco plants. The level of human MT in transgenic tobacco plants varied between 25 and 95 μg g−1. However, a plant cell protects itself by synthesizing low molecular mass thiols such as reduced glutathione and phytochelatins to protect itself against heavy metals toxicity. The most important thiols, cysteine (Cys), glutathione (GSH), oxidised glutathione (GSSG) and phytochelatin 2 (PC2), were determined in the non-transgenic and transgenic tobacco plants by high performance liquid chromatography with electrochemical detection. Tobacco plants synthesizing the highest amount of metallothionein have the highest basal level of phytochelatin 2 as well as reduced glutathione and free cysteine. It clearly follows from the results obtained that the biosynthesis of particular thiols is mutually linked, which contributes to a better protection of a transgenic plant against heavy metals effects.  相似文献   
229.
Metallothinein-3 (MT3), also named neuronal growth inhibitory factor (GIF), is attractive by its distinct neuronal growth inhibitory activity, which is not shared by other MT isoforms. The polypeptide chain of GIF is folded into two individual domains, which are connected by a highly conserved linker, KKS. In order to figure out the significance of the conserved segment, we constructed several mutants of human GIF (hGIF), including the K31/32A mutant, the K31/32E mutant and the KKS-SP mutant by site-directed mutagenesis. pH titration and DTNB reaction exhibited that all the three mutations made the β-domain lower in stability and looser. More significantly, change of KKS to SP also altered the general backbone conformation and metal–thiolate cluster geometry. Notably, bioassay results showed that the bioactivity of the K31/32A mutant and the K31/32E mutant decreased obviously, while the KKS-SP mutant lost inhibitory activity completely. Based on these results, we proposed that the KKS linker was a crucial factor in modulating the stability and the solvent accessibility of the Cd3S9 cluster in the β-domain through domain–domain interactions, thus was indispensable to the biological activity of hGIF.  相似文献   
230.
As3+ bound to the two-domain, recombinant human metallothionein (isoform 1a) is stable at pH 7 and translocates via protein-protein interactions to other metallothionein proteins. The data show As3+ transfer from the two-domain β-α-hMT to binding sites in the isolated apo-β-hMT and apo-α-hMT. Under conditions of equilibrium, apo- and partially-metallated species coexist indicating that noncooperative demetallation of the As6-βα-hMT occurrs. As3+ transfer under conditions (pH 7) where the free As3+ ion is not stable, provides evidence that Cd2+ and Zn2+ transfer may also take place through protein-protein interactions and that partially metallated Cd-MT and Zn-MT would be stable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号