首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1426篇
  免费   65篇
  国内免费   94篇
  2024年   1篇
  2023年   22篇
  2022年   17篇
  2021年   26篇
  2020年   40篇
  2019年   33篇
  2018年   28篇
  2017年   29篇
  2016年   42篇
  2015年   35篇
  2014年   52篇
  2013年   86篇
  2012年   56篇
  2011年   108篇
  2010年   62篇
  2009年   124篇
  2008年   105篇
  2007年   106篇
  2006年   72篇
  2005年   68篇
  2004年   59篇
  2003年   56篇
  2002年   48篇
  2001年   26篇
  2000年   22篇
  1999年   28篇
  1998年   26篇
  1997年   14篇
  1996年   22篇
  1995年   18篇
  1994年   16篇
  1993年   23篇
  1992年   11篇
  1991年   12篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   4篇
  1986年   11篇
  1985年   7篇
  1984年   9篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1585条查询结果,搜索用时 31 毫秒
11.
Summary We have used the cDNA clone encoding maize glutathione-S-transferase (GST I) to isolate a genomic DNA clone containing the complete GST I gene. Nucleotide sequence analysis of the cDNA and genomic clones has yielded a complete amino acid sequence for maize GST I and provided the exon-intron map of its gene. The mRNA homologous sequences in the maize GST I gene consist of a 107 bp 5 untranslated region, a 642 bp coding region and 340 bp of the 3 untranslated region. They are divided into three exons by two introns which interrupt the coding region. The 5 untranslated spacer contains an unusual sequence of pentamer AGAGG repeated seven times. The inbred maize line (Missouri 17) contains a single gene for GST I, whereas the hybrid line (3780A) contains two genes. Nucleotide sequence analysis of the primer extended cDNA products reveals that the 5 untranslated regions of the two genes in the hybrid 3780A are identical except for a 6 bp internal deletion (or insertion). The amino acid sequence of maize GST I shares no apparent sequence homology with the published sequences of animal GST's and represents the first published sequence of a plant GST. re]19850813 ac]19851126  相似文献   
12.
Abstract: The fibrillogenic properties of Alzheimer's Aβ peptides corresponding to residues 1–40 of the normal human sequence and to two mutant forms containing the replacement Ala21 to Gly or Glu22 to Gln were compared. At pH 7.4 and 37°C the Gln22 peptide was found to aggregate and precipitate from solution faster than the normal Aβ, whereas the Gly21 peptide aggregated much more slowly. Electron microscopy showed that the aggregates all had fibrillar structures. Circular dichroism spectra of these peptides revealed that aggregation of the normal and Gln22 sequences was associated with spectral changes consistent with a transformation from random coil to β sheet, whereas the spectrum of the Gly21 peptide remained almost unchanged during a period in which little or no aggregation occurred. When immobilised by spotting onto nitrocellulose membranes the peptides bound similar amounts of the radioisotope 65Zn2+. Of several competing metal ions, tested at 20× the concentration of Zn2+, Cu2+ displaced >95% of the radioactivity from all three peptides and Ni2+ produced >50% displacement in each case. Some other metal ions tested caused lesser displacement, but Fe2+ and Al3+ were without effect. In a saturation binding assay, a value of 3.2 µM was obtained for the binding of Zn2+ to Aβ but our data provided no evidence for a reported higher affinity site (107 nM). The results suggest that the neuropathology associated with the Gly21 mutation is not due to enhanced fibrillogenic or different metal-binding properties of the peptide and that the binding of zinc to amyloid peptides is not a specific phenomenon.  相似文献   
13.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   
14.
This work describes protocols for the production of single-chain antibody and T-cell receptor fragments inE. coli. A choice of methods is given for the purification of the recombinant fragments that rely on the use of either immunoaffinity or metal chelate affinity chromatography. The TCR fragments may have to be denatured and refolded before the fragments attain their proper conformation.  相似文献   
15.
Abstract: Iron is a universal cofactor for mitochondrial energy generation and supports the growth and differentiation of all cell types. In the CNS, iron is a key component of systems responsible for myelination and the synthesis of several neurotransmitters. In this study the spatial and temporal pattern of iron and its regulatory proteins transferrin and ferritin are quantitatively examined in the rat CNS during the first 3 weeks of postnatal life and in adults and aged animals. The midbrain, the cerebral cortex, and the cerebellum-pons are examined independently. Iron, transferrin, and ferritin concentrations are highest in all three brain regions at birth and decrease in each region to minimum levels during the third postnatal week. The decrease in levels of iron, transferrin, and ferritin is most pronounced in the cerebellum-pons and cortex and least in the midbrain. From postnatal day 17, iron (total iron content) and ferritin levels increase throughout the lifetime of the rat. In contrast, transferrin levels remain fairly constant in each brain region after postnatal day 24. The midbrain region, which includes the iron-rich regions such as the globus pallidus, substantia nigra, and red nucleus, has the least change in iron with development, has the highest level of ferritin during development, and consistently has the highest level of transferrin at all ages. These observations are consistent with reports that iron is important for normal motor function. Transferrin did not increase after postnatal day 24 in the three brain regions examined despite increasing amounts of iron, which implies a decrease in iron mobility in the aged rats, a finding that is consistent with observations of human brain tissue. The data reported in this study demonstrate that iron acquisition and mobilization systems in the CNS are established early in development and that the overall pattern of acquisition among brain regions is similar. These data offer support and insight into established concepts that a sufficient iron supply is critical for normal neurological development.  相似文献   
16.
Abstract: Effects of cadmium (10 nM), copper (80 nM) and zinc (150 nM) additions were studied in the marine diatom Ditylum brightwellii and the riverine diatom Thalassiosira pseudonana . Defense against oxidative stress via cellular thiol (SH) pools and superoxide dismutase (SOD) activation, detoxification via phytochelatins and cell damage were monitored in metal-exposed exponential-phase cells and controls, grown in estuarine medium. Total SH and reduced + oxidized glutathione (GSH + GSSG) in T. pseudonana were much higher than in D. brightwellii . In T. pseudonana , total SH and GSH decreased at 322 nM Zn, and GSH increased at 80 nM Cu but decreased at 119 nM Cu. GSH:GSSG ratios were low, while phytochelatins were not detectable in metal-exposed D. brightwellii . Cd-exposed T. pseudonana made more phytochelatins than Cu-exposed cells, and in different proportions. At 322 nM Zn, SOD activity decreased in T. pseudonana . Zn caused a major, and Cu a minor increase of SOD activity in D. brightwellii ; inhibition of photosynthesis was observed in Cu-exposed D. brightwellii , probably due to oxidative damage. The C:N ratios were higher and protein contents lower in Cu-exposed cells of both species, which might indicate excretion due to a loss of cell membrane integrity. From these results, it is hypothesized that T. pseudonana has evolved an effective detoxification mechanism as a result of a more severe exposure to toxic metals in rivers and estuaries. In contrast, D. brightwellii , a marine-estuarine species, cannot adjust well to metal exposure. Its poor defense against metal toxicity was marked by low SH-contents.  相似文献   
17.
Organisms inhabiting metal-contaminated areas can be stressed by metal exposure and are possibly subject to selection, resulting in increased metal tolerance and changes in growth and/or reproduction characteristics. In a previous study it was found that in the terrestrial isopod Porcellio scaber, sampled from the vicinity of a zine smelter, the body size was small and the brood size was large compared to isopods from a reference area. To assess whether these differences were due to genetic differentiation between strains, isopods collected from a reference wood, a zinc smelter area and a lead mine were cultured on non-polluted food, while growth, reproduction and metal concentrations were studied in first and second laboratory generations. The isopods from the three populations differed in age and weight at first reproduction, although there were hardly any differences in growth. The females of the mine and the smelter population started to reproduce earlier, at a lower weight, which resulted in fewer young per female. However, reproductive allocation (=wight of young relative to the weight of the mother) was higher in mine and smelter isopods. We conclude that the isopods at the metal-contaminated sites have been selected for early reproduction and increased reproductive allocation. The results indicate that populations inhabiting metal-polluted sites have probably undergone evolutionary changes. This study showed that growth and reproduction characteristics of different populations under laboratory conditions may provide information on selection processes in the field.  相似文献   
18.
本文研究了在加热过程中金属离子螯合剂植酸、聚磷酸钠和EDTANa_2对橙汁和橙汁模拟体系中L—抗坏血酸的稳定作用,并采用红外光谱和紫外差光谱对EDTANa_2的保护机理作了初步探讨。结果表明:植酸和聚磷酸钠均不能降低Cu~(2+)对橙汁模拟体系中L—抗坏血酸氧化降解的催化作用,而EDTANa_2不仅能络合Cu~(2+),减少L—抗坏血酸的催化降解损失,而且红外光谱和紫外差光谱及溶剂微扰研究还揭示出EDTANa_2可与L—抗坏血酸形成氢键保护,这种氢键保护作用受到糖和柠檬酸的不利影响。  相似文献   
19.
In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.  相似文献   
20.
Metal ions intersect a wide range of biological processes. Some metal ions are essential and hence absolutely required for the growth and health of an organism, others are toxic and there is great interest in understanding mechanisms of toxicity. Genetically encoded fluorescent sensors are powerful tools that enable the visualization, quantification, and tracking of dynamics of metal ions in biological systems. Here, we review recent advances in the development of genetically encoded fluorescent sensors for metal ions. We broadly focus on 5 classes of sensors: single fluorescent protein, FRET-based, chemigenetic, DNAzymes, and RNA-based. We highlight recent developments in the past few years and where these developments stand concerning the rest of the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号