首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   80篇
  国内免费   129篇
  2024年   3篇
  2023年   21篇
  2022年   20篇
  2021年   40篇
  2020年   54篇
  2019年   53篇
  2018年   56篇
  2017年   62篇
  2016年   64篇
  2015年   58篇
  2014年   85篇
  2013年   119篇
  2012年   76篇
  2011年   137篇
  2010年   72篇
  2009年   147篇
  2008年   128篇
  2007年   149篇
  2006年   84篇
  2005年   92篇
  2004年   83篇
  2003年   72篇
  2002年   59篇
  2001年   38篇
  2000年   34篇
  1999年   40篇
  1998年   37篇
  1997年   23篇
  1996年   30篇
  1995年   33篇
  1994年   27篇
  1993年   23篇
  1992年   12篇
  1991年   14篇
  1990年   19篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2138条查询结果,搜索用时 31 毫秒
91.
92.
Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013–2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.  相似文献   
93.
口腔内金属材料对磁共振检查的影响   总被引:2,自引:0,他引:2  
检测口腔内常用金属材料在磁共振检查时是否有伪影和伪影的严重程度。对21种口腔内常用金属材料做了磁共振成像测试,磁共振仪磁场强度为1.5T,所用序列是梯度回波。铸金片、银汞合金、银尖等9种材料无伪影;钛合金和金属烤瓷成品有轻度伪影;牙用固位钉、椿钉等10种材料有严重伪影。部分口腔内金属材料会引起严重伪影,影响图象质量,所以在做口腔颌面部和服部磁共振成像时,须引起重视。  相似文献   
94.
The present study investigated the water quality index (WQI) of the Kshipra river at Dewas, Madhya Pradesh, India, using native fish Labeo rohita, and plant Eichhornia crassipes. The temperature, pH, dissolved oxygen, alkalinity, turbidity, and dissolved solids were found to be within the prescribed limits. However, heavy metals concentration exceeded the limit except for Cu and Zn. Their occurrence in river water was as follows: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Among these heavy metals, Cd was found to be highly bioavailable, whereas Zn was the least bioavailable metal. Based on WQI, the water was found to be unfit for drinking, and the high WQI value was due to the presence of Cr and Cd. In fish tissues (muscle, liver, gut, gills, and kidney), the highest and lowest metal pollution index was found in gills (45.03) and kidneys (12.21), respectively. Bioaccumulation of these metals resulted in significant depletion of energy reserves (protein, glucose, and glycogen) and also altered hematological parameters. Moreover, liver function tests showed hepatic damage in the exposed fish. In-plant, both the bioaccumulation and mobility factor exceeded 1 for all these metals. On the other hand, the translocation factor was found to be beyond 1 for Fe, Ni, and Zn. These high values make this plant fit for phytoextraction of Mn, Fe, Cu, Zn, and Cd and phytostabilization of Cr in water. Moreover, consumption of L. rohita from the Kshipra River does not pose a non-cancer risk as the target hazard quotient was below 1, but it may pose cancer risk because of the presence of Cr in the range of 1.402 × 10?3 to 1.599 × 10?3.  相似文献   
95.
Overactive matrix metalloproteinases (MMPs) are associated with a variety of disease states. Therefore, their inhibition is a highly desirable goal. Yet, more than a decade of worldwide activity has not produced even one clinically useful inhibitor. Because of the crucial role of zinc in the activity of the enzyme, the design of inhibitors is usually based upon a so-called zinc binding group (ZBG). Yet, many of the hitherto synthesized potent inhibitors failed clinically, presumably because they bind stronger to metals other than zinc. We have developed in vivo potent inhibitors based on the carbamoylphosphonic group as a putative ZBG. In this paper we report stability constants for Ca(II), Mg(II), Zn(II) and Cu(II) complexes of two potent, in vivo active, MMP inhibitors, cyclopentylcarbamoylphosphonic acid (1) and 2-(N,N-dimethylamino)ethylcarbamoylphosphonic acid (2). Precipitation prevented the determination of stability constants for iron(III) complexes of 1 and 2. For comparison with carbamoylphosphonates 1 and 2, we synthesized 2-cyclohexyl-1,1-difluoroethylphosphonic acid (3), which does not inhibit MMP, and determined the stability constants of its complexes with Mg(II), Ca(II) and Zn(II). Comparison with the values obtained from the complexes of 1 and 2 with those from 3 indicates participation of the C=O group in the metal binding of the former compounds. The complex stability orders for both 1 and 2 are Ca(II)<Mg(II)<Zn(II)<Cu(II). In addition, the results indicate that at pH>8 the dimethylamino group of compound 2 can also participate in the binding of the transition metals Cu and Zn. On the other hand, the amino group in carbamoylphosphonic acid 2 lowers the stability of the complexes with metals favoring oxygen ligands (Ca, Mg and Fe) and increases the selectivity towards Zn. These results are helpful for rationalizing the results observed on our MMP inhibitors hitherto examined, and are expected to be useful for the design of new selective inhibitors.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0524-5  相似文献   
96.
Nucleation-dependent protein aggregation (seeding) and amyloid fibril-free formation of soluble SDS-resistant oligomers (oligomerization) by hydrophobic interaction is an in vitro model thought to propagate -amyloid (A) deposition, accumulation, and incur neurotoxicity and synaptotoxicity in Alzheimers disease (AD), and other amyloid-associated neurodegenerative diseases. However, A is a high-affinity metalloprotein that aggregates in the presence of biometals (zinc, copper, and iron), and neocortical A deposition is abolished by genetic ablation of synaptic zinc in transgenic mice. We now present in vitro evidence that trace (0.8 µM) levels of zinc, copper, and iron, present as common contaminants of laboratory buffers and culture media, are the actual initiators of the classic A1–42-mediated seeding process and A oligomerization. Replicating the experimental conditions of earlier workers, we found that the in vitro precipitation and amyloidosis of A1–40 (20 µM) initiated by A1–42 (2 µM) were abolished by chelation of trace metal contaminants. Further, metal chelation attenuated formation of soluble A oligomers from a cell-free culture medium. These data suggest that protein self-assembly and oligomerization are not spontaneous in this system as previously thought, and that there may be an obligatory role for metal ions in initiating A amyloidosis and oligomerization.  相似文献   
97.
AIMS: The purpose of the study was to compare the growth of Mycobacterium avium subsp. paratuberculosis (Map) and the degree of contamination on Herrold's egg yolk medium (HEYM) and modified L?wenstein-Jensen medium (LJ). METHODS AND RESULTS: Culture of 2513 faecal samples from dairy cows was performed on each of the two media. The media were read after 5, 8 and 12 weeks of incubation. Overall, the proportion of contaminated samples was significantly higher on LJ (14.2%) than on HEYM (13.2%) after 12 weeks but the degree of contamination was slightly less on LJ. After 8 weeks of incubation, only 1.0% of the samples were Map positive in LJ with 4.9% on HEYM. After 12 weeks of incubation, 3.3% of the samples were Map positive in LJ whereas 6.9% were positive in HEYM. All suspect and culture positive samples were confirmed by IS900 PCR. CONCLUSIONS: HEYM supported growth of Map significantly better and faster than LJ, however it could not be determined conclusively which of the two media that provided the highest degree of decontamination when the incubation time was also included. SIGNIFICANCE AND IMPACT OF THE STUDY: HEYM should be the primary medium rather than LJ for detection of Map in cattle.  相似文献   
98.
The role of arbuscular mycorrhizal fungi (AMF) in lead (Pb) uptake by corn (Zea mays) grown in soil supplemented with Pb was examined. Plants were subjected to four Pb levels: 0 (control); 10 (low); 100 (medium); and 500 mg L(-1) (high). At each Pb level, plants were grown in soil without and with fungicide (benomyl) (20 mg kg(-1)) to suppress AMF activity. Benomyl significantly reduced AMF colonization at high. medium, and zero Pb exposures. Benomyl application resulted in significantly lower concentrations of phosphorus in leaves at low and medium Pb exposures. The benomyl-treated plants had higher Pb and manganese concentrations in leaves than plants not treated with benomyl. In addition, benomyl-treated plants had generally lower concentrations of zinc and copper in leaves than plants not treated with benomyl. These results suggest that the role of AMF in heavy metal uptake is metal specific. Based on this work, the use of benomyl on soils contaminated with Pb can be recommended in phytoextraction.  相似文献   
99.
Adhesion of tissue cells to metallic implants is a major factor that is important for proper tissue integration. Adhesion of Swiss mouse 3T3 fibroblasts to gold, platinum and palladium surfaces was investigated. Immunofluorescence staining for the integrin subunits alphav and beta1 and the focal contact protein vinculin revealed that cells growing on gold and platinum expressed many focal contacts. In contrast, cells on palladium surfaces had reduced numbers of focal contacts shown by vinculin staining and failed to demonstrate expression of alphav and beta1 in focal contacts. Spread cell area was also significantly reduced on palladium than on other surfaces suggesting that cells on palladium were more weakly attached. This may be due to either a different molecular composition of focal contacts in cells grown on palladium surfaces or unusual microstructural properties of the palladium surface. This model is useful to evaluate adhesion of cells to different metal surfaces.  相似文献   
100.
P1B-type ATPases transport a variety of metals (Cd2+, Zn2+, Pb2+, Co2+, Cu2+, Ag+, Cu+) across biomembranes. Characteristic sequences CP[C/H/S] in transmembrane fragment H6 were observed in the putative transporting metal site of the founding members of this subfamily (initially named CPx-ATPases). In spite of their importance for metal homeostasis and biotolerance, their mechanisms of ion selectivity are not understood. Studies of better-characterized PII-type ATPases (Ca-ATPase and Na,K-ATPase) have identified three transmembrane segments that participate in ion binding and transport. Testing the hypothesis that metal specificity is determined by conserved amino acids located in the equivalent transmembrane segments of P1B-type ATPases (H6, H7, and H8), 234 P1B-ATPase protein sequences were analyzed. This showed that although H6 contains characteristic CPX or XPC sequences, conserved amino acids in H7 and H8 provide signature sequences that predict the metal selectivity in each of five P1B-ATPase subgroups identified. These invariant amino acids contain diverse side chains (thiol, hydroxyl, carbonyl, amide, imidazolium) that can participate in transient metal coordination during transport and consequently determine the particular metal selectivity of each enzyme. Each subgroup shares additional structural characteristics such as the presence (or absence) of particular amino-terminal metal-binding domains and the number of putative transmembrane segments. These differences suggest unique functional characteristics for each subgroup in addition to their particular metal specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号