首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10884篇
  免费   1098篇
  国内免费   907篇
  2024年   47篇
  2023年   328篇
  2022年   430篇
  2021年   626篇
  2020年   713篇
  2019年   807篇
  2018年   546篇
  2017年   374篇
  2016年   469篇
  2015年   444篇
  2014年   665篇
  2013年   783篇
  2012年   495篇
  2011年   590篇
  2010年   440篇
  2009年   487篇
  2008年   549篇
  2007年   539篇
  2006年   463篇
  2005年   409篇
  2004年   387篇
  2003年   338篇
  2002年   249篇
  2001年   155篇
  2000年   127篇
  1999年   134篇
  1998年   145篇
  1997年   121篇
  1996年   98篇
  1995年   119篇
  1994年   95篇
  1993年   87篇
  1992年   59篇
  1991年   58篇
  1990年   48篇
  1989年   40篇
  1988年   40篇
  1987年   35篇
  1986年   37篇
  1985年   41篇
  1984年   52篇
  1983年   28篇
  1982年   41篇
  1981年   26篇
  1980年   30篇
  1979年   17篇
  1978年   14篇
  1976年   15篇
  1974年   9篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
242.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
  相似文献   
243.
Applied ecology is based on an assumption that a management action will result in a predicted outcome. Testing the prediction accuracy of ecological models is the most powerful way of evaluating the knowledge implicit in this cause-effect relationship, however, the prevalence of predictive modeling and prediction testing are spreading slowly in ecology. The challenge of prediction testing is particularly acute for small-scale studies, because withholding data for prediction testing (e.g., via k-fold cross validation) can reduce model precision. However, by necessity small-scale studies are common. We use one such study that explored small mammal abundance along an elevational gradient to test prediction accuracy of models with varying degrees of information content. For each of three small mammal species, we conducted 5000 iterations of the following process: (1) randomly selected 75 % of the data to develop generalized linear models of species abundance that used detailed site measurements as covariates, (2) used an information theoretic approach to compare the top model with detailed covariates to habitat type-only and null models constructed with the same data, (3) tested those models’ ability to predict the 25 % of the randomly withheld data, and (4) evaluated prediction accuracy with a quadratic loss function. Detailed models fit the model-evaluation data best but had greater expected prediction error when predicting out-of-sample data relative to the habitat type models. Relationships between species and detailed site variables may be evident only within the framework of explicitly hierarchical analyses. We show that even with a small but relatively typical dataset (n = 28 sampling locations across 125 km over two years), researchers can effectively compare models with different information content and measure models’ predictive power, thus evaluating their own ecological understanding and defining the limits of their inferences. Identifying the appropriate scope of inference through prediction testing is ecologically valuable and is attainable even with small datasets.  相似文献   
244.
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   
245.
The estrogen receptor (ER)-negative breast cancer subtype is aggressive with few treatment options available. To identify specific prognostic factors for ER-negative breast cancer, this study included 705,729 and 1034 breast invasive cancer patients from the Surveillance, Epidemiology, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases, respectively. To identify key differential kinasesubstrate node and edge biomarkers between ER-negative and ER-positive breast cancer patients, we adopted a network-based method using correlation coefficients between molecular pairs in the kinase regulatory network. Integrated analysis of the clinical and molecular data revealed the significant prognostic power of kinase–substrate node and edge features for both subtypes of breast cancer. Two promising kinase–substrate edge features, CSNK1A1NFATC3 and SRCOCLN, were identified for more accurate prognostic prediction in ER-negative breast cancer patients.  相似文献   
246.
AMPH1, an abundant protein in nerve terminals, plays a critical role in the recruitment of dynamin to sites of clathrin‐mediated endocytosis. Recently, it is reported to be involved in breast cancer and lung cancer. However, the impact of AMPH1 on ovarian cancer is unclear. In this study, we used gain‐of‐function and loss‐of‐function methods to explore the role of AMPH1 in ovarian cancer cells. AMPH1 inhibited ovarian cancer cell growth and cell migration, and promoted caspase‐3 activity, resulting in the increase of cell apoptosis. In xenograft mice model, AMPH1 prevented tumour progression. The anti‐oncogene effects of AMPH1 on ovarian cancer might be partially due to the inhibition of PI3K/AKT signalling pathway after overexpression of AMPH1. Immunohistochemistry analysis showed that the staining of AMPH1 was remarkably reduced in ovarian cancer tissues compared with normal ovarian tissues. In conclusion, our study identifies AMPH1 as a tumour suppressor in ovarian cancer in vitro and in vivo. This is the first evidence that AMPH1 inhibited cell growth and migration, and induced apoptosis via the inactivation of PI3K/AKT signalling pathway on ovarian cancer, which may be used as an effective strategy.  相似文献   
247.
248.
Recent studies have shown that tumour necrosis factor‐α–induced protein 8 like‐1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.  相似文献   
249.
250.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号