首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6634篇
  免费   593篇
  国内免费   637篇
  2024年   11篇
  2023年   149篇
  2022年   221篇
  2021年   297篇
  2020年   334篇
  2019年   331篇
  2018年   287篇
  2017年   276篇
  2016年   309篇
  2015年   321篇
  2014年   465篇
  2013年   536篇
  2012年   288篇
  2011年   433篇
  2010年   303篇
  2009年   389篇
  2008年   353篇
  2007年   361篇
  2006年   296篇
  2005年   286篇
  2004年   268篇
  2003年   234篇
  2002年   181篇
  2001年   125篇
  2000年   103篇
  1999年   93篇
  1998年   75篇
  1997年   58篇
  1996年   49篇
  1995年   57篇
  1994年   65篇
  1993年   39篇
  1992年   43篇
  1991年   33篇
  1990年   25篇
  1989年   15篇
  1988年   16篇
  1987年   14篇
  1986年   16篇
  1985年   19篇
  1984年   16篇
  1983年   8篇
  1982年   11篇
  1981年   14篇
  1980年   8篇
  1979年   9篇
  1978年   4篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
排序方式: 共有7864条查询结果,搜索用时 15 毫秒
991.
自然界中多糖类生物质资源十分丰富,然而其复杂的抗降解屏障限制了生物转化的进程.近年来,随着生物质多糖结构的快速解析以及大量多糖降解酶的鉴定研究,针对不同底物结构或产物需求,仿制高效微生物多糖代谢途径,精确定制多糖降解酶系,促进生物质高效转化已成为可能.本文分析中性多糖(纤维素和木聚糖)、碱性多糖(几丁质和壳聚糖)以及酸性多糖(褐藻胶)的精细结构组成与基团性质,总结3类多糖主要降解酶的活性架构特征及其底物精确结合模式.文章还阐述蛋白质工程设计与定制策略,针对酶分子不同功能区的分析,可为酶分子的功能快速设计与改造提供靶点,以获得适宜于工业应用的高效酶分子,此外,根据微生物胞外降解酶系的降解次序与协同关系,可基于应用需求精确定制复杂多糖降解酶系,实现生物质的高效与高值降解转化.  相似文献   
992.
BackgroundKnowledge on Bi metabolism in laboratory animals refers to studies at “extreme” exposures, i.e. pharmacologically relevant high-doses (mg kg−1 b.w.) in relation to its medical use, or infinitesimal doses (pg kg−1b.w.) concerning radiobiology protection and radiotherapeutic purposes. There are no specific studies on metabolic patterns of environmental exposure doses (ultratrace level, μg kg−1 b.w.), becoming in this context Bi a “heavy metal fallen into oblivion”. We previously reported the results of the metabolic fate of ultratrace levels of Bi in the blood of rats [1]. In reference to the same study here we report the results of the retention and tissue binding of Bi with intracellular and molecular components.MethodsAnimals were intraperitoneally injected with 0.8 μg Bi kg−1 b.w. as 205+206Bi(NO)3, alone or in combination with 59Fe for the radiolabeling of iron proteins. The use of 205+206Bi radiotracer allowed the determination of Bi down to pg fg−1 in biological fluids, tissues, subcellular fractions, and biochemical components isolated by differential centrifugation, size exclusion chromatography, solvent extraction, precipitation, immunoprecipitation and dialysis.Main findingsAt 24 h post injection the kidney contained by far the highest Bi concentration (10 ng g−1 wt.w.) followed by the thymus, spleen, liver, thyroid, trachea, femur, lung, adrenal gland, stomach, duodenum and pancreas (0.1 to 1.3 ng g−1 wt.w.). Brain and testis showed smaller but consistently significant concentrations of the element (0.03 ng g−1 wt.w). Urine was the predominant route of excretion. Intracellularly, liver, kidney, spleen, testis, and brain cytosols displayed the highest percentages (35%–58%) of Bi of homogenates. Liver and testis nuclei were the organelles with the highest Bi content (24 % and 27 %). However, when the recovered Bi of the liver was recorded as percent of total recovered Bi divided by percent of total recovered protein the lysosomes showed the highest relative specific activity than in other fractions. In the brain subcellular fractions Bi was incorporated by neuro-structures with the protein and not lipidic fraction of the myelin retaining 18 % of Bi of the total homogenate. After the liver intra-subcellular fractionation: (i) 65 % of the nuclear Bi was associated with the protein fraction of the nuclear membranes and 35 % with the bulk chromatin bound to non-histone and DNA fractions; (ii) about 50 % of the mitochondrial Bi was associated with inner and outer membranes being the other half recovered in the intramitochondrial matrix; (iii) in microsomes Bi showed a high affinity (close to 90 %) for the membranous components (rough and smooth membranes); (iv) In the liver cytosol three pools of Bi-binding proteins (molecular size > 300 kDa, 70 kDa and 10 kDa) were observed with ferritin and metallothionein–like protein identified as Bi-binding biomolecules. Three similar protein pools were also observed in the kidney cytosol. However, the amount of Bi, calculated in percent of the total cytosolic Bi, were significantly different compared to the corresponding pools of the liver cytosol.ConclusionsAt the best of our knowledge the present paper represents the first in vivo study, on the basis of an environmental toxicology approach, aiming at describing retention and binding of Bi in the rat at tissue, intracellular and molecular levels.  相似文献   
993.
Continuum methods are not accurate enough for flows at high Knudsen numbers, whereas rigorous molecular dynamics (MD) methods are too costly for simulations at practical dimensions. Hard-sphere (HS) model is a simplified MD method efficient for dilute gaseous flow but is of poor parallelism due to its event-driven nature, which sets a strong limitation to its large-scale applications. In this work, pseudo-particle modelling, a time-driven modelling approach is coupled with HS model to construct a scalable parallel method capable of simulating flows and transport processes at high Knudsen numbers without losing necessary molecular details in describing their macro-scale behaviours. The method is validated in several classical simulation cases and its performance is evaluated to be favourable. To demonstrate the potential applications of this method, we also simulate the diffusion of small molecules in multi-scale porous media which is related to catalysis, material preparation and micro chemical engineering in the long term.  相似文献   
994.
In the last 10 years, studies of energetic metabolism in different tumors clearly indicate that the definition of Warburg effect, i.e. the glycolytic shift cells undergo upon transformation, ought to be revisited considering the metabolic plasticity of cancer cells. In fact, recent findings show that the shift from glycolysis to re-established oxidative metabolism is required for certain steps of tumor progression, suggesting that mitochondrial function and, in particular, respiratory complex I are crucial for metabolic and hypoxic adaptation. Based on these evidences, complex I can be considered a lethality target for potential anticancer strategies. In conclusion, in this mini review we summarize and discuss why it is not paradoxical to develop pharmacological and genome editing approaches to target complex I as novel adjuvant therapies for cancer treatment.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   
995.
Cystine-knot miniproteins, also known as knottins, constitute a large family of structurally related peptides with diverse amino acid sequences and biological functions. Knottins have emerged as attractive candidates for drug development as they potentially fill a niche between small molecules and protein biologics, offering drug-like properties and the ability to bind to clinical targets with high affinity and selectivity. Due to their extremely high stability and unique structural features, knottins also demonstrate promise in addressing challenging drug development goals, including the potential for oral delivery and the ability to access intracellular drug targets. Several naturally-occurring knottins have recently received approval for treating chronic pain and irritable bowel syndrome, while others are under development for tumor imaging applications. To expand beyond nature’s repertoire, rational and combinatorial protein engineering methods are generating tumor-targeting knottins for use as cancer diagnostics and therapeutics.  相似文献   
996.
《Organogenesis》2013,9(3):89-95
Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed.  相似文献   
997.
《Process Biochemistry》2014,49(5):751-757
The biosynthesis of L-phenylalanine (Phe) is one of the most complicated amino acid synthesis pathways. In this study, the engineering of Phe producer was carried out to illustrate the effectiveness of systems level engineering: (1) inactivated glucose specific phosphoenolpyruvate-carbohydrate phosphotransferase (PTS) system by inactivation of crr to moderate the glucose uptake rate to reduce overflow metabolism; (2) genetic switch on or off the expression of phefbr, aroG15, ydiB, aroK, and tyrB to increase the supply of precursors; (3) employed a tyrA mutant strain to reduce carbon diversion and to result in non-growing cells; (4) enhanced the efflux of Phe by overexpressing yddG to shift equilibrium towards Phe synthesis and to release the feedback regulation in Phe synthesis. The mutants in PTS were firstly compared and a crr mutant was firstly screened. The mutant AroG15 was demonstrated to a thermostable mutant. The strains expressing yddG excreted Phe into the medium at higher rate and less intracellular Phe accumulated. By systems level engineering, an engineered Phe producer achieved 47.0 g/L Phe with a yield of 0.252 g/g which was the highest under the non-optimized fermentation condition.  相似文献   
998.
Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity “swaps” for oxidoreductase enzymes utilizing NAD(H) or NADP(H) in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae. The theoretical yields of all native carbon-containing molecules are considered, as well as theoretical yields of twelve heterologous production pathways in E. coli. Swapping the cofactor specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast—including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine—and non-native products in E. coli—including 1,3-propanediol, 3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate, and styrene.  相似文献   
999.
PurposeThe purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson’s disease related pattern (PDRP).MethodsFDG-PET brain scans of 20 Parkinson’s disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation. PDRP versions were compared by assessing differences in topographies, individual subject scores and correlations with patient’s clinical ratings. Discrimination of PD from NC and AP subjects was evaluated across cohorts.ResultsThe region weights of the six PDRPs highly correlated (R ≥ 0.991; p < 0.0001). All PDRPs’ expressions were significantly elevated in PD relative to NC and AP subjects (p < 0.0001) and correlated with clinical ratings (R ≥ 0.47; p < 0.05). Subject scores of the six PDRPs highly correlated within each of individual healthy and parkinsonian groups (R ≥ 0.972, p < 0.0001) and were consistent across the algorithms when using the same reconstruction methods in PDRP derivation and validation. However, when derivation and validation reconstruction algorithms differed, subject scores were notably lower compared to the reference PDRP, in all subject groups.ConclusionPDRP proves to be highly reproducible across FDG-PET image reconstruction algorithms in topography, ability to differentiate PD from NC and AP subjects and clinical correlation. When calculating PDRP scores in scans that have different reconstruction algorithms and imaging systems from those used for PDRP derivation, a calibration with NC subjects is advisable.  相似文献   
1000.
Pyrethrins, the most economically important natural insecticide, comprise a group of six closely related monoterpene esters. The industrial production is based on their extraction from Chrysanthemum cinerariaefolium (Pyrethrum) capitula. The world production of natural pyrethrins still falls short of global market demand stimulating the research in in vitro production as an alternative to conventional cultivation methods. The different biotechnological alternatives such as callus cultures, shoot and root cultures, plant cell suspension cultures, and bioconversion of precursors by means of enzymatic synthesis or genetically engineered microorganisms, as well as the progress achieved in methods for the identification and quantitation of insecticidal compounds have been reviewed. Although technology for plant cell culture exists, industrial applications have, to date, been limited due to both the low economical viability and technological feasibility at large scale. Bioconversion of readily available precursors looks more attractive, but more research is needed before this technology is used for the industrial production of pyrethrins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号