首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6645篇
  免费   601篇
  国内免费   642篇
  7888篇
  2024年   18篇
  2023年   155篇
  2022年   230篇
  2021年   297篇
  2020年   335篇
  2019年   331篇
  2018年   287篇
  2017年   277篇
  2016年   309篇
  2015年   321篇
  2014年   465篇
  2013年   536篇
  2012年   288篇
  2011年   433篇
  2010年   303篇
  2009年   389篇
  2008年   353篇
  2007年   361篇
  2006年   296篇
  2005年   286篇
  2004年   268篇
  2003年   234篇
  2002年   181篇
  2001年   125篇
  2000年   103篇
  1999年   93篇
  1998年   75篇
  1997年   58篇
  1996年   49篇
  1995年   57篇
  1994年   65篇
  1993年   39篇
  1992年   43篇
  1991年   33篇
  1990年   25篇
  1989年   15篇
  1988年   16篇
  1987年   14篇
  1986年   16篇
  1985年   19篇
  1984年   16篇
  1983年   8篇
  1982年   11篇
  1981年   14篇
  1980年   8篇
  1979年   9篇
  1978年   4篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
排序方式: 共有7888条查询结果,搜索用时 0 毫秒
921.
Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two‐dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell‐specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three‐dimensional (3D) culture systems in pharmaceutical research. Isolated primary rat hepatocytes were cultured on collagen‐coated nanofibrous scaffolds for 7 days. Cell loading efficiency was quantified via DNA content measurement. Cell viability and presence of liver‐cell‐specific functions (albumin secretion, glycogen storage capacity) were evaluated. The activity of liver‐specific factors was analyzed by immunofluorescent staining. RNA was isolated to establish quantitative real‐time PCR. Our results indicate that primary rat hepatocytes cultured on nanofibrous scaffolds revealed high viability and well‐preserved glycogen storage. Albumin secretion was existent during the entire culture period. Hepatocytes remain HNF‐4 positive, indicating highly preserved cell differentiation. Aggregated hepatocytes re‐established positive signaling for Connexin 32, a marker for differentiated hepatocyte interaction. ZO‐1‐positive hepatocytes were detected indicating formation of tight junctions. Expression of cytochrome isoenzymes was inducible. Altogether the data suggest that nanofibrous scaffolds provide a good in vitro microenvironment for neo tissue regeneration of primary rat hepatocytes. Biotechnol. Bioeng. 2011; 108:141–150. © 2010 Wiley Periodicals, Inc.  相似文献   
922.
蜘蛛丝蛋白研究进展   总被引:4,自引:0,他引:4  
由于蜘蛛丝蛋白分子高度重复的一级结构、特殊的溶解特性和分子折叠行为以及具有形成非凡力学特性丝纤维的能力而引人注目。本文从蛛丝蛋白基因、天然蛛丝形成过程、蛛丝蛋白的基因工程生产及蛛丝蛋白的应用前景等几个方面着重介绍了近20年来对蛛丝蛋白的研究进展。围绕蛛丝蛋白展开的研究将有助于揭示蛋白质一级结构、蛋白质分子折叠与蛋白质大分子特性之间的内在联系。  相似文献   
923.
In actinomycetes, the onset of secondary metabolite biosynthesis is often triggered by the quorum-sensing signal γ-butyrolactones (GBLs) via specific binding to their cognate receptors. However, the presence of multiple putative GBL receptor homologues in the genome suggests the existence of an alternative regulatory mechanism. Here, in the model streptomycete Streptomyces coelicolor, ScbR2 (SCO6286, a homologue of GBL receptor) is shown not to bind the endogenous GBL molecule SCB1, hence designated “pseudo” GBL receptor. Intriguingly, it could bind the endogenous antibiotics actinorhodin and undecylprodigiosin as ligands, leading to the derepression of KasO, an activator of a cryptic type I polyketide synthase gene cluster. Likewise, JadR2 is also a putative GBL receptor homologue in Streptomyces venezuelae, the producer of chloramphenicol and cryptic antibiotic jadomycin. It is shown to coordinate their biosynthesis via direct repression of JadR1, which activates jadomycin biosynthesis while repressing chloramphenicol biosynthesis directly. Like ScbR2, JadR2 could also bind these two disparate antibiotics, and the interactions lead to the derepression of jadR1. The antibiotic responding activities of these pseudo GBL receptors were further demonstrated in vivo using the lux reporter system. Overall, these results suggest that pseudo GBL receptors play a novel role to coordinate antibiotic biosynthesis by binding and responding to antibiotics signals. Such an antibiotic-mediated regulatory mechanism could be a general strategy to coordinate antibiotic biosynthesis in the producing bacteria.  相似文献   
924.
The L -aspartate family amino acids (AFAAs), L -threonine, L -lysine, L -methionine and L -isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L -threonine, L -lysine and L -methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.  相似文献   
925.
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target.  相似文献   
926.
PPARγ 基因与代谢综合征关系的研究进展   总被引:1,自引:0,他引:1  
过氧化物酶体增殖物激活受体(PPARs)γ基因已被公认在调控脂肪细胞分化和多种代谢(糖、脂肪、能量代谢等)中起重要作用。它在脂肪、肌肉、肝脏等多种与胰岛素作用有关的组织中表达,并且具备激活后调控涉及葡萄糖的产生、转运、利用及脂肪代谢的调节等基因的表达。PPARγ基因在脂肪细胞分化、糖、脂代谢、动脉粥样硬化形成、炎性反应中起重要作用,从而与T2DM、胰岛素抵抗、肥胖症、心血管疾病和高血压等疾病的发病风险相关。本文综述了PPARγ基因的结构、功能及其多态性与代谢综合征关系的研究进展。  相似文献   
927.
氯代苯胺类化合物微生物降解的研究进展*   总被引:3,自引:0,他引:3  
对氯代苯胺类化合物(Chlovoanilines,CAS)好氧微生物降解的研究现状进行了系统的综述,内容包括具有降解氯代苯胺类化合物能力的微生物、氯代苯胺类化合物的代谢途径及相关代谢酶的分析、降解质粒和关键代谢酶的基因克隆和表达,并提出了氯代苯胺类化合物好氧微生物降解研究中存在的问题和尚需进一步研究的方面。  相似文献   
928.
用人Metallothioenin-Ⅱ启动子、乙型肝炎表面抗原基因,SV40早期基因的编接位点和多聚A位点构成了表达组件,然后插入到经改造过的BpV-1质粒中。所得质粒pdMTsAg-5转染小鼠C127细胞得到转化克隆。Ausria Ⅱ检测证明13株中有12株能产生HBsAg。对其中一株进行HBsAg收率观察,隔天收获为292.6~525.8μg/升,每天收获为200.9~369.0μg/升,可连续收获60天以上。经重金属离子诱导后,收率增至583~854.4μg/升。培养液经超滤浓缩和两次密梯离心后,可集中为一个狭窄的峰,顶峰的Ausria Ⅱ cpm为1.05×10~7,密度为1.20g/ml。  相似文献   
929.
The bacterial gene ubiC encodes chorismate pyruvate-lyase (CPL), which converts chorismate to 4-hydroxybenzoate (4HB). The ubiC gene was expressed in tobacco (Nicotiana tabacum L., Solanaceae) and potato (Solanum tuberosum L., Solanaceae) under the control of the very strong constitutive plant promotor (ocs3) mas. High accumulation of 4HB glucosides as new, artificial secondary metabolites was observed in the transgenic plants. 4HB glucoside content reached 5.1% of dry weight in tobacco cell cultures and 4.0% of dry weight in the leaves of potato shoots. This is the highest content of an artificial secondary metabolite produced by genetic engineering of plants reported so far. Surprisingly, no growth retardation and no phenotypical changes were observed in the transgenic cell cultures and plants. Glucosylation of 4HB was achieved by endogeneous, constitutively expressed glucosyltransferases. The total amount of 4HB glucoside acccumulated showed a strict linear dependence on the expression level of ubiC.  相似文献   
930.
Hydrogen is a potential sustainable energy source and it could become an alternative to fossil fuel combustion, thus helping to reduce greenhouse gas emissions. The biological production of hydrogen, instead of its chemical synthesis, is a promising possibility since this process requires less energy and is more sustainable and eco-friendly. Several microorganisms have been used for this purpose, but Escherichia coli is one of the most widely used in this field. The literature in this area has increased exponentially in the last 10 years and several strategies have been reported in an effort to improve hydrogen production. In this work, the stay of the art of hydrogen biosynthesis by E. coli and metabolic engineering strategies to enhance hydrogen production are reviewed. This work includes a discussion about the hydrogenase complexes responsible for the hydrogen synthesis in this microorganism and the central carbon metabolism pathways connected to this process. The main metabolic engineering strategies applied are discussed, including heterologous gene expression, adaptive evolution and metabolic and protein engineering. On the other hand, culture conditions, including the use of carbon sources such as glycerol, glucose or organic wastes, have also been considered. Yields and productivities of the most relevant engineered strains reported using several carbon sources are also compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号