全文获取类型
收费全文 | 3057篇 |
免费 | 67篇 |
国内免费 | 77篇 |
专业分类
3201篇 |
出版年
2023年 | 19篇 |
2022年 | 90篇 |
2021年 | 110篇 |
2020年 | 103篇 |
2019年 | 60篇 |
2018年 | 71篇 |
2017年 | 71篇 |
2016年 | 97篇 |
2015年 | 89篇 |
2014年 | 242篇 |
2013年 | 332篇 |
2012年 | 243篇 |
2011年 | 281篇 |
2010年 | 293篇 |
2009年 | 120篇 |
2008年 | 139篇 |
2007年 | 139篇 |
2006年 | 113篇 |
2005年 | 67篇 |
2004年 | 80篇 |
2003年 | 58篇 |
2002年 | 27篇 |
2001年 | 18篇 |
2000年 | 26篇 |
1999年 | 24篇 |
1998年 | 23篇 |
1997年 | 18篇 |
1996年 | 14篇 |
1995年 | 20篇 |
1994年 | 21篇 |
1993年 | 16篇 |
1992年 | 11篇 |
1991年 | 16篇 |
1990年 | 13篇 |
1989年 | 8篇 |
1988年 | 8篇 |
1987年 | 6篇 |
1986年 | 8篇 |
1985年 | 12篇 |
1984年 | 14篇 |
1983年 | 8篇 |
1982年 | 14篇 |
1981年 | 9篇 |
1980年 | 8篇 |
1979年 | 10篇 |
1978年 | 6篇 |
1976年 | 8篇 |
1975年 | 3篇 |
1974年 | 6篇 |
1970年 | 2篇 |
排序方式: 共有3201条查询结果,搜索用时 15 毫秒
91.
Kiviharju K Moilanen U Leisola M Eerikäinen T 《Applied microbiology and biotechnology》2007,73(6):1267-1274
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic
constants μ
max over 0.10 h−1, Y
XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y
PX 12.99 mg g−1 and m
P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic
flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway
fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature,
airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift
the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone
flux. 相似文献
92.
Hisashi Yagi Daisaku Ozawa Kazumasa Sakurai Toru Kawakami Hiroki Kuyama Osamu Nishimura Toshinori Shimanouchi Ryoichi Kuboi Hironobu Naiki Yuji Goto 《The Journal of biological chemistry》2010,285(25):19660-19667
The amyloid deposition of amyloid β (Aβ) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of β2-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Aβ fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Aβ fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD. 相似文献
93.
Gangming Xu Juan Wang Linqi Wang Xiuyun Tian Haihua Yang Keqiang Fan Keqian Yang Huarong Tan 《The Journal of biological chemistry》2010,285(35):27440-27448
In actinomycetes, the onset of secondary metabolite biosynthesis is often triggered by the quorum-sensing signal γ-butyrolactones (GBLs) via specific binding to their cognate receptors. However, the presence of multiple putative GBL receptor homologues in the genome suggests the existence of an alternative regulatory mechanism. Here, in the model streptomycete Streptomyces coelicolor, ScbR2 (SCO6286, a homologue of GBL receptor) is shown not to bind the endogenous GBL molecule SCB1, hence designated “pseudo” GBL receptor. Intriguingly, it could bind the endogenous antibiotics actinorhodin and undecylprodigiosin as ligands, leading to the derepression of KasO, an activator of a cryptic type I polyketide synthase gene cluster. Likewise, JadR2 is also a putative GBL receptor homologue in Streptomyces venezuelae, the producer of chloramphenicol and cryptic antibiotic jadomycin. It is shown to coordinate their biosynthesis via direct repression of JadR1, which activates jadomycin biosynthesis while repressing chloramphenicol biosynthesis directly. Like ScbR2, JadR2 could also bind these two disparate antibiotics, and the interactions lead to the derepression of jadR1. The antibiotic responding activities of these pseudo GBL receptors were further demonstrated in vivo using the lux reporter system. Overall, these results suggest that pseudo GBL receptors play a novel role to coordinate antibiotic biosynthesis by binding and responding to antibiotics signals. Such an antibiotic-mediated regulatory mechanism could be a general strategy to coordinate antibiotic biosynthesis in the producing bacteria. 相似文献
94.
Gautam B Singh G Wadhwa G Farmer R Singh S Singh AK Jain PA Yadav PK 《Bioinformation》2012,8(3):134-141
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target. 相似文献
95.
PPARγ 基因与代谢综合征关系的研究进展 总被引:1,自引:0,他引:1
齐春娜郭淑霞 《现代生物医学进展》2012,12(19):3741-3743
过氧化物酶体增殖物激活受体(PPARs)γ基因已被公认在调控脂肪细胞分化和多种代谢(糖、脂肪、能量代谢等)中起重要作用。它在脂肪、肌肉、肝脏等多种与胰岛素作用有关的组织中表达,并且具备激活后调控涉及葡萄糖的产生、转运、利用及脂肪代谢的调节等基因的表达。PPARγ基因在脂肪细胞分化、糖、脂代谢、动脉粥样硬化形成、炎性反应中起重要作用,从而与T2DM、胰岛素抵抗、肥胖症、心血管疾病和高血压等疾病的发病风险相关。本文综述了PPARγ基因的结构、功能及其多态性与代谢综合征关系的研究进展。 相似文献
96.
Transformation of peripheral blood lymphocytes after exposure to connective tissue antigens was measured in patients with adult (n = 35) and juvenile rheumatoid arthritis (n = 34), osteoarthritis (n = 21), ankylosing spondylitis (n = 15), and systemic lupus erythematosus (n = 26) and in control subjects (n = 36). The connective tissue antigens included homologous cartilage-type proteoglycan, cyanogen bromide-derived peptides of type I, II, and III collagens, and type I and II helical collagens. Lymphocyte transformation was not detected in the osteoarthritic and control groups, with one exception. Sensitization to at least one connective tissue antigen was detected in approximately one-third of the rheumatoid arthritic and lupus patients and in one-quarter of the juvenile rheumatoid patients. In ankylosing spondylitis, positive responses occurred to proteoglycan in 20% of patients tested but never to collagens or peptides. Sensitivity to proteoglycan was detected only in ankylosing spondylitis except for one patient with juvenile rheumatoid arthritis. In patients with systemic lupus erythematosus and both forms of rheumatoid arthritis, lymphocyte transformation was usually more frequently detected to peptides than to the helical collagens. In adult rheumatoid arthritis, type II peptides elicited an elevated number of responses (14%) as did type I (9%) and III (8%) peptides to lesser degrees. Responses to type I (4%) and II (4%) helical collagens were infrequent. Rheumatoid arthritic patients usually exhibited sensitivity to only one antigen and lymphocyte transformation was often detected when the arthritis was improving. In juvenile rheumatoid arthritis, lymphocyte transformation was detected to peptides of type I (16%), II (9%), and III (29%) collagens and to helical type I (12%) and II (8%) collagens. In systemic lupus erythematosus, sensitization was detected to peptides of type I (13%), II (20%), and III (14%) collagens and to helical type I collagen (18%) but not type II collagen. Simultaneous sensitivity to several antigens often occurred in both systemic lupus erythematosus and juvenile rheumatoid arthritis. Examination of individual patients in all three rheumatic disease groups revealed that immune sensitivity developed to collagen peptides rather than to the helical molecules, particularly in the case of type II collagen. Thus, some patients with inflammatory arthritis exhibit immune responses to connective tissue components which are, as a group, characteristic for each type of arthritis. These responses, which were not obviously associated with disease activity, may develop as a result of inflammation or trauma which destroys connective tissue and exposes molecules, in either a native or degraded state, to cells of the immune system. Expression of sensitivity to these tissue antigens may contribute to the chronicity of the inflammatory arthritides. 相似文献
97.
Hydrogen is a potential sustainable energy source and it could become an alternative to fossil fuel combustion, thus helping to reduce greenhouse gas emissions. The biological production of hydrogen, instead of its chemical synthesis, is a promising possibility since this process requires less energy and is more sustainable and eco-friendly. Several microorganisms have been used for this purpose, but Escherichia coli is one of the most widely used in this field. The literature in this area has increased exponentially in the last 10 years and several strategies have been reported in an effort to improve hydrogen production. In this work, the stay of the art of hydrogen biosynthesis by E. coli and metabolic engineering strategies to enhance hydrogen production are reviewed. This work includes a discussion about the hydrogenase complexes responsible for the hydrogen synthesis in this microorganism and the central carbon metabolism pathways connected to this process. The main metabolic engineering strategies applied are discussed, including heterologous gene expression, adaptive evolution and metabolic and protein engineering. On the other hand, culture conditions, including the use of carbon sources such as glycerol, glucose or organic wastes, have also been considered. Yields and productivities of the most relevant engineered strains reported using several carbon sources are also compared. 相似文献
98.
Several inositol isomers and in particular myo-inositol (MI) and D-chiro-inositol (DCI), were shown to possess insulin-mimetic properties and to be efficient in lowering post-prandial blood glucose. In addition, abnormalities in inositol metabolism are associated with insulin resistance and with long term microvascular complications of diabetes, supporting a role of inositol or its derivatives in glucose metabolism. The aim of this review is to focus on the potential benefits of a dietary supplement of myo-inositol, by far the most common inositol isomer in foodstuffs, in human disorders associated with insulin resistance (polycystic ovary syndrome, gestational diabetes mellitus or metabolic syndrome) or in prevention or treatment of some diabetic complications (neuropathy, nephropathy, cataract). The relevance of such a nutritional strategy will be discussed for each context on the basis of the clinical and/or animal studies. The dietary sources of myo-inositol and its metabolism from its dietary uptake to its renal excretion will be also covered in this review. Finally, the actual insights into inositol insulin-sensitizing effects will be addressed and in particular the possible role of inositol glycans as insulin second messengers. 相似文献
99.
目的:探讨超声在围绝经期妇科疾病诊断中的作用,为临床诊断提供依据.方法:选取2012年2月至2012年8月间于我院接受诊断和治疗的处于围绝经期的阴道不规则出血患者128例,观察超声诊断与病理学诊断的差异,分析超声诊断的作用.结果:超声诊断与病理学检查结果的总符合率为95.31%,内膜良性病变类型与内膜癌和癌前病变类型的平均内膜厚度均明显高于内膜生理变化类型(P<0.05),子宫内膜厚度≥10mm的发生内膜良性病变或内膜癌及癌前病变的64例(66.67%),厚度<10 mm的患者发生内膜良性病变或内膜癌及癌前病变10例(31.25%),差异有统计学意义(P<0.05).结论:超声在围绝经期妇科疾病诊断中的作用显著,值得在临床上推广应用. 相似文献
100.
Jong-Ho Cha Yelin Jeong Ah-Reum Oh Sang Bae Lee Soon-Sun Hong KyeongJin Kim 《BMB reports》2021,54(9):451
Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases. 相似文献