首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2599篇
  免费   118篇
  国内免费   52篇
  2769篇
  2023年   65篇
  2022年   64篇
  2021年   84篇
  2020年   54篇
  2019年   71篇
  2018年   58篇
  2017年   57篇
  2016年   31篇
  2015年   61篇
  2014年   78篇
  2013年   118篇
  2012年   87篇
  2011年   87篇
  2010年   67篇
  2009年   97篇
  2008年   114篇
  2007年   124篇
  2006年   117篇
  2005年   86篇
  2004年   114篇
  2003年   86篇
  2002年   90篇
  2001年   64篇
  2000年   67篇
  1999年   63篇
  1998年   57篇
  1997年   48篇
  1996年   56篇
  1995年   58篇
  1994年   53篇
  1993年   42篇
  1992年   37篇
  1991年   49篇
  1990年   43篇
  1989年   49篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   22篇
  1984年   22篇
  1982年   22篇
  1981年   20篇
  1980年   14篇
  1979年   13篇
  1978年   16篇
  1977年   12篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2769条查询结果,搜索用时 0 毫秒
981.
Ban JY  Jeon SY  Bae K  Song KS  Seong YH 《Life sciences》2006,79(24):2251-2259
We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.  相似文献   
982.
Insulin-like growth factor-I (IGF-I) plays important roles in survival of neurons. Caveolae, cholesterol-rich microdomains of plasma membrane, act as platforms for some neurotrophic factors. In this study, we examined a possible role of caveolae in IGF-I signal transduction in pheochromocytoma PC12 cells. IGF-I treatment attenuated serum withdrawal-induced apoptosis, which was reversed by treatment with methyl-beta-cyclodextrin (CD) that removes cholesterol from plasma membrane. Immunocytochemical and subcellular fractionation analyses revealed that IGF-I receptor (IGF-IR) was colocalized with caveolin-1, a major protein component in caveolae, and that CD treatment reduced IGF-IR contents in caveolae. Consistent with these findings, IGF-I phosphorylation of insulin receptor substrate-1 and Akt was impaired, and cholesterol supply restored the IGF-I action. Furthermore, experiments using small interfering RNA revealed that the reduction of caveolin-1 expression impaired the IGF-I action. In addition, the colocalization of IGF-IR with caveolin-1, and the caveolae-dependent IGF-I action were duplicated in primary culture of rat cerebellar granule neurons. These results demonstrate that the presence of IGF-IR in caveolae is required for the neuroprotective action of IGF-I.  相似文献   
983.
Mechanisms of increase in diazepam binding inhibitor (DBI) mRNA expression in mouse cerebrocortical neurons after sustained morphine exposure were investigated. Increases in DBI and its mRNA expressions induced by sustained morphine (0.3 μM) exposure for 3 days were completely abolished by naloxone and nifedipine, but not by ω-agatoxin VIA and ω-conotoxin GIVA. Increase in [3H]diltiazem binding to the particulate fractions from the morphine-treated neurons was due to increased Bmax value with no changes in Kd value. Western blot analysis on l-type high voltage-gated calcium channel (HVCC) subunits revealed the increased expressions of α1C, α1D, and α2/δ1 subunits and decreased of β4 subunit expression, whereas expression of N- and P/Q-type HVCC subunits was not changed. These results indicate that morphine-induced increase in DBI mRNA expression is mediated via increased Ca2+ entry through up-regulated l-type HVCCs.  相似文献   
984.
Several lines of evidence suggest the involvement of the raphe-serotonergic neurons in addiction to psychostimulants and some recreational drugs. In this study, we established rat organotypic mesencephalic slice cultures containing the raphe nuclei and examined the effects of sustained exposure to 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH). Immunostaining for tryptophan hydroxylase (TPH) studies revealed that serotonergic neurons were abundant in the slice cultures. Sustained exposure to MDMA and METH (1-1000 microM) for 4 days had little effect on the serotonin tissue content, [(3)H]citalopram binding, or expression/phosphorylation of TPH. Treatment with MDMA or METH for 30 min increased serotonin release in a concentration-dependent manner. Slice cultures were exposed to MDMA for 4 days following a 1-day withdrawal period and then challenged with MDMA (10 microM). Sustained MDMA exposure augmented MDMA-induced serotonin release in a concentration-dependent manner, indicating serotonergic sensitization. Similar serotonergic sensitization was observed for METH. The development of MDMA-induced serotonergic sensitization was attenuated by the NMDA receptor antagonist, MK-801 (10 microM). These results suggest that in mesencephalic slice cultures sustained MDMA or METH exposure induces serotonergic sensitization through activation of NMDA receptors without serotonergic neurotoxicity. The in vitro model system could help to elucidate the mechanisms underlying drug addiction.  相似文献   
985.
Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio–vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche.  相似文献   
986.
Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. The chemokine stromal cell-derived factor 1, (SDF1), binds to the seven-transmembrane G protein-coupled CXCR4 receptor and acts to modulate cell migration, differentiation, and proliferation. CXCR4 and SDF1 are reported to be expressed in various tissues including brain. Here we show that SDF1 and CXCR4 are expressed in cultured cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In cortical astrocytes, prolonged treatment with lipopolysaccharide induced an increase of SDF1 expression and a down-regulation of CXCR4, whereas treatment with phorbol esters did not affect SDF1 expression and down-modulated CXCR4 receptor expression. We also demonstrated the ability of human SDF1alpha (hSDF1alpha) to increase the intracellular calcium level in cultured astrocytes and cortical neurons, whereas in the same conditions, cerebellar granule cells did not modify their intracellular calcium concentration. Furthermore, in cortical astrocytes, the simultaneous treatment of hSDF1alpha with the HIV-1 capside glycoprotein gp120 inhibits the cyclic AMP formation induced by forskolin treatment.  相似文献   
987.
Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.  相似文献   
988.
Therapeutic potential of neurotrophins for treatment of hearing loss   总被引:3,自引:0,他引:3  
Degeneration of spiral ganglion neurons (SGNs) and hair cells in the cochlea induced by aging, injury, ototoxic drugs, acoustic trauma, and various diseases is the major cause of hearing loss. Discovery of growth factors that can either prevent SGN and hair-cell death or stimulate hair-cell regeneration would be of great interest. Studies over the past several years have provided evidence that specific neurotrophins are potent survival factors for SGNs and protect these neurons from ototoxic drugs in vitro and in vivo. Current research focuses more on understanding the mechanism of hair-cell regeneration/differentiation and identification of growth factors that can stimulate hair-cell regeneration. SGNs are required to relay the signal to the central nervous system even when a cochlear implant is used to replace hair-cell function or in the case that cochlear sensory epithelium can be stimulated to regenerate new hair cells successfully. Therefore, neurotrophins may have their therapeutic value in prevention and treatment of hearing impairment.  相似文献   
989.
Summary The topographical organization of the prothoracic ganglion of the cricket, Gryllus campestris L., is described from horizontal, transverse, and sagittal sections of preparations specially treated to elucidate longitudinal tracts, commissures, and areas of neuropil. These structures were compared to those reported from other insect thoracic ganglia, resulting in still further evidence for a common basic morphological pattern among insect central nervous systems.Six types of auditory interneurons, all existing as mirrorimage pairs, were identified through intracellular application of the dye Lucifer yellow, and then related to several morphological patterns. Two intrasegmental neurons (ON1, ON2) are similar in location of cell bodies and course of neurites and axons; three intersegmental neurons (AN1, AN2, TN1) are likewise similar to one another. The axons of the two intrasegmental neurons cross the midline of the ganglion in the newly described omega commissure. Axons of the other four types all course within the median portion of the ventral intermediate tract and project intersegmentally.All six neuron types arborize within the ventral portion of the ring tract, the same neuropilar region in which auditory sensory neurons terminate. The ring tract is therefore considered the most important region for auditory information processing within the cricket prothoracic ganglion.  相似文献   
990.
It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号