首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2596篇
  免费   113篇
  国内免费   52篇
  2023年   63篇
  2022年   60篇
  2021年   84篇
  2020年   53篇
  2019年   71篇
  2018年   58篇
  2017年   57篇
  2016年   31篇
  2015年   61篇
  2014年   78篇
  2013年   118篇
  2012年   87篇
  2011年   87篇
  2010年   67篇
  2009年   97篇
  2008年   114篇
  2007年   124篇
  2006年   117篇
  2005年   86篇
  2004年   114篇
  2003年   86篇
  2002年   90篇
  2001年   64篇
  2000年   67篇
  1999年   63篇
  1998年   57篇
  1997年   48篇
  1996年   56篇
  1995年   58篇
  1994年   53篇
  1993年   42篇
  1992年   37篇
  1991年   49篇
  1990年   43篇
  1989年   49篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   22篇
  1984年   22篇
  1982年   22篇
  1981年   20篇
  1980年   14篇
  1979年   13篇
  1978年   16篇
  1977年   12篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2761条查询结果,搜索用时 265 毫秒
61.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   
62.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   
63.
We have analyzed the distribution of putative cholinergic neurons in whole-mount preparations of adult Drosophila melanogaster. Putative cholinergic neurons were visualized by X-gal staining of P-element transformed flies carrying a fusion gene consisting of 5′ flanking DNA from the choline acetyltransferase (ChAT) gene and a lacZ reporter gene. We have previously demonstrated that cryostat sections of transgenic flies carrying 7.4 kb of ChAT 5′ flanking DNA show reporter gene expression in a pattern essentially similar to the known distribution of ChAT protein. Whole-mount staining of these same flies by X-gal should thus represent the overall distribution of ChAT-positive neurons. Extensive staining was observed in the cephalic, thoracic, and stomodeal ganglia, primary sensory neurons in antenna, maxillary palps, labial palps, leg, wing, and male genitalia. Primary sensory neurons associated with photoreceptors and tactile receptors were not stained. We also examined the effects of partial deletions of the 7.4 kb fragment on reporter gene expression. Deletion of the 7.4 kb fragment to 1.2 kb resulted in a dramatic reduction of X-gal staining in the peripheral nervous system (PNS). This indicates that important regulatory elements for ChAT expression in the PNS exist in the distal region of the 7.4 kb fragment. The distal parts of the 7.4 kb fragment, when fused to a basal heterologous promoter, can independently confer gene expression in subsets of putative cholinergic neurons. With these constructs, however, strong ectopic expression was also observed in several non-neuronal tissues. © 1995 John Wiley & Sons, Inc.  相似文献   
64.
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 104 times slower than that of action potentials. © 1995 John Wiley & Sons, Inc.  相似文献   
65.
Antibodies directed against different visual pigment opsins, and an antibody raised against the C terminal of the -subunit of retinal G protein (transducin) labelled cerebrospinal fluid-contacting cells located within the hypothalamus (postoptic commissural nucleus and ventral hypothalamic nucleus) of ammocoete lampreys (Petromyzon marinus). These antibodies also labelled photoreceptor cells within the retina and the pineal and parapineal organs, but no other areas of the brain. Despite considerable behavioural and physiological evidence for the existence of deep brain photoreceptors, numerous studies have failed to identify photoreceptor proteins within the basal brain. The results presented in this paper support our recent results in the lizard Anolis carolinensis, suggesting that a group of cerebrospinal fluid-contacting neurons within the vertebrate brain have a photosensory capacity. We speculate that these cells mediate extraocular and extrapineal photoreception in nonmammalian vertebrates.  相似文献   
66.
67.
Abstract: The relation between the availability of newly synthesized protein and lipid and the axonal transport of optically detectable organelles was examined in peripheral nerve preparations of amphibia (Rana catesbeiana and Xenopus laevis) in which intracellular traffic from the endo-plasmic reticulum to the Golgi complex was inhibited with brefeldin A (BFA). Accumulation of fast-transported radio-labeled protein or phospholipid proximal to a sciatic nerve ligature was monitored in vitro in preparations of dorsal root ganglia and sciatic nerve. Organelle transport was examined by computer-enhanced video microscopy of single myelinated axons. BFA reduced the amount of radiolabeled protein and lipid entering the fast-transport system of the axon without affecting either the synthesis or the transport rate of these molecules. The time course of the effect of BFA on axonal transport is consistent with an action at an early step in the intrasomal pathway, and with its action being related to the observed rapid (<1 h) disassembly of the Golgi complex. At a concentration of BFA that reduced fast-transported protein by >95%, no effect was observed on the flux or velocity of anterograde or retrograde organelle transport in axons for at least 20 h. Bidirectional axonal transport of organelles was similarly unaffected following suppression of protein synthesis by >99%. The findings suggest that the anterograde flux of transport organelles is not critically dependent on a supply of newly synthesized membrane precursors. The possibilities are considered that anterograde organelles normally arise from membrane components supplied from a post-Golgi storage pool, as well as from recycled retrograde organelles.  相似文献   
68.
Abstract: This study explores the role of cyclic AMP in electrically evoked [3H]noradrenaline release and in the α2-adrenergic modulation of this release in chick sympathetic neurons. Along with an increase in stimulation-evoked tritium overflow, applications of forskolin enhanced the formation of intracellular cyclic AMP. Both effects of forskolin were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. The forskolin-induced increase in overflow was abolished by the Rp-diastereomer of cyclic AMP-thioate, an antagonist at cyclic AMP-dependent protein kinases, and 1,9-dideoxy-forskolin, an inactive analogue at adenylyl cyclase, had no effect on the evoked overflow. A 24-h pretreatment with either cholera toxin or forskolin reduced the subsequent forskolin-induced accumulation of cyclic AMP and inhibited the stimulation-evoked release. Basal cyclic AMP production, however, remained unaltered after forskolin treatment and was enhanced after 24 h of cholera toxin exposure. The α2-adrenergic agonist bromoxidine did not affect the formation of cyclic AMP stimulated by forskolin but reduced electrically evoked release. However, effects of bromoxidine on 3H overflow were attenuated by forskolin as well as by 8-bromo-cyclic AMP. Effects of bromoxidine on [3H]noradrenaline release were paralleled by an inhibition of voltage-activated Ca2+ currents, primarily through a delayed time course of current activation. This effect was abolished when either forskolin or 8-bromo-cyclic AMP was included in the pipette solution. Both substances, however, failed to affect Ca2+ currents in the absence of bromoxidine. These results suggest that the signaling cascade of the α2-adrenergic inhibition of noradrenaline release involves voltage-activated Ca2+ channels but not cyclic AMP. Elevated levels of cyclic AMP, however, antagonize this α2-adrenergic reduction, apparently through a disinhibition of Ca2+ channels.  相似文献   
69.
Hair cells in the basal, high frequency region (>1100 Hz) of the chicken cochlea were destroyed with kanamycin (400 mg/kg/d × 10 d) and allowed to regenerate. Afterwards, single unit recordings were made from cochlear ganglion neurons at various times post-treatment. During the first few weeks post-treatment, only neurons with low characteristic frequencies (<1100 Hz) responded to sound. Despite the fact that the low frequency region of the cochlea was not destroyed, neurons with low characteristic frequencies had elevated thresholds, abnormally broad U-shaped or W-shaped tuning curves and low spontaneous discharge rates. At 2 days post-treatment, the spontaneous discharge rates of some acoustically unresponsive units fluctuated in a rhythmical manner. As recovery time increased, thresholds decreased, tuning curves narrowed and developed a symmetrical V-shape, spontaneous rate increased and neurons with higher characteristic frequencies began to respond to sound. In addition, the proportion of interspike interval histograms with regularly spaced peaks increased. These improvements progressed along a low-to-high characteristic frequency gradient. By 10–20 weeks post-treatment, the thresholds and tuning curves of neurons with characteristic frequencies below 2000 Hz were within normal limits; however, the spontaneous discharge rates of the neurons were still significantly lower than those from normal animals.Abbreviations KM kanamycin - BrdU bromodeoxyuridine - CF characteristic frequency - CAP compound action potential - ISI interspike interval  相似文献   
70.
Metallothionein (MT) isoforms I and II were first identified and characterized in our laboratories in several regions of brain, in hippocampal neurons in primary culture, and in retinoblastoma and neuroblastoma cell lines. In this study, by having employed the MT-I cDNA as a probe, we sought to gain additional insight about the function of MT by discerning the regional distribution of its mRNA. Northern blot analyses of brain mRNA revealed that the administration of zinc enhanced dramatically MT-I mRNA (570 bp). The in situ hybridization study revealed that MT-I mRNA was located in several areas of brain, with the highest concentrations found in the cerebellum, hippocampus, and ventricles. The results of these studies are interpreted to suggest that zinc enhances the synthesis of MT mRNA and MT in turn may participate in zinc associated functions in neurons.Abbreviations MT-I Metallothionein I isoform - mRNA Messenger ribonucleic acid - 35S dCTP 35S Deoxycytidine triphosphate - 32P dCTP 32P Deoxycytidine triphosphate - icv Intracerebroventricularly - IP Intraperitoneally - PBS Paraformaldehyde phosphate buffered saline solution - Tris 2 amino-2-hydroxymethylpropane-1,3 diol - EDTA Ethylenediaminetetraacetic acid - cDNA Complimentary deoxyribonucleic acid - bp Base pair  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号