首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   82篇
  国内免费   52篇
  2023年   7篇
  2022年   27篇
  2021年   26篇
  2020年   29篇
  2019年   48篇
  2018年   35篇
  2017年   41篇
  2016年   29篇
  2015年   34篇
  2014年   94篇
  2013年   66篇
  2012年   45篇
  2011年   42篇
  2010年   38篇
  2009年   55篇
  2008年   52篇
  2007年   61篇
  2006年   50篇
  2005年   35篇
  2004年   27篇
  2003年   30篇
  2002年   29篇
  2001年   18篇
  2000年   19篇
  1999年   26篇
  1998年   17篇
  1997年   15篇
  1996年   17篇
  1995年   11篇
  1994年   16篇
  1993年   24篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   15篇
  1984年   15篇
  1983年   10篇
  1982年   11篇
  1981年   20篇
  1980年   8篇
  1979年   8篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1227条查询结果,搜索用时 15 毫秒
61.
62.
The recent determination of the complete genome sequence of Corynebacterium diphtheriae, the aetiological agent of diphtheria, has allowed a detailed comparison of its physiology with that of its closest sequenced pathogenic relative Mycobacterium tuberculosis. Of major importance to the pathogenicity and resilience of the latter is its particularly complex cell envelope. The corynebacteria share many of the features of this extraordinary structure although to a lesser level of complexity. The cell envelope of M. tuberculosis has provided the molecular targets for several of the major anti-tubercular drugs. Given a backdrop of emerging multi-drug resistant strains of the organism (MDR-TB) and its continuing global threat to human health, the search for novel anti-tubercular agents is of paramount importance. The unique structure of this cell wall and the importance of its integrity to the viability of the organism suggest that the search for novel drug targets within the array of enzymes responsible for its construction may prove fruitful. Although the application of modern bioinformatics techniques to the 'mining' of the M. tuberculosis genome has already increased our knowledge of the biosynthesis and assembly of the mycobacterial cell wall, several issues remain uncertain. Further analysis by comparison with its relatives may bring clarity and aid the early identification of novel cellular targets for new anti-tuberculosis drugs. In order to facilitate this aim, this review intends to illustrate the broad similarities and highlight the structural differences between the two bacterial envelopes and discuss the genetics of their biosynthesis.  相似文献   
63.
The Menkes protein (MNK) and Wilson protein (WND) are transmembrane, CPX-type Cu-ATPases with six metal binding sites (MBSs) in the N-terminal region containing the motif GMXCXXC. In cells cultured in low copper concentration MNK and WND localize to the transGolgi network but in high copper relocalize either to the plasma membrane (MNK) or a vesicular compartment (WND). In this paper we investigate the role of the MBSs in Cu-transport and trafficking. The copper transport activity of MBS mutants of MNK was determined by their ability to complement a strain of Saccharomyces cerevisiae deficient in CCC2 (ccc2), the yeast MNK/WND homologue. Mutants (CXXC to SXXS) of MBS1, MBS6, and MBSs1-3 were able to complement ccc2 while mutants of MBS4-6, MBS5-6 and all six MBS inactivated the protein. Each of the inactive mutants also failed to display Cu-induced trafficking suggesting a correlation between trafficking and transport activity. A similar correlation was found with mutants of MNK in which various MBSs were deleted, but two constructs with deletion of MBS5-6 were unable to traffic despite retaining 25% of copper transport activity. Chimeras in which the N-terminal MBSs of MNK were replaced with the corresponding MBSs of WND were used to investigate the region of the molecules that is responsible for the difference in Cu-trafficking of MNK and WND. The chimera which included the complete WND N-terminus localized to a vesicular compartment, similar to WND in elevated copper. Deletions of various MBSs of the WND N-terminus in the chimera indicate that a targeting signal in the region of MBS6 directs either WND/MNK or WND to a vesicular compartment of the cell.  相似文献   
64.
为了衡量细胞固定化载体的性能。基于单分子层吸附理论,利用溶液中亚甲蓝染料在固形物表面的吸附倾向;建立了用于测定细胞固定化载体比表面的“动态染料吸附法”,方法学考察时以PVA-海藻酸钠的混合载体为例,结果表明四批次测量同一载体比表面的结果变异系数为5.5%,测量的载体比表面能精确反映载体内PVA,或是海藻酸钠浓度的变化,说明方法重复性好,灵敏度高,同时讨论了文献中“染料吸附法”测定比表面的不足。  相似文献   
65.
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.  相似文献   
66.
Bacterial malonyl-CoA:acyl carrier protein transacylase catalyzes the transfer of a malonyl moiety from malonyl-CoA to the free thiol group of the phosphopantetheine arm of acyl carrier protein. Malonyl-ACP, the product of this enzymatic reaction, is the key building block for de novo fatty acid biosynthesis. Here, we describe a continuous enzyme assay based on the coupling of the malonyl-CoA:acyl carrier protein transacylase reaction to alpha-ketoglutarate dehydrogenase (KDH). KDH-dependent consumption of the coenzyme A generated by malonyl-CoA:acyl carrier protein transacylase is accompanied by a reduction of nicotinamide adenine dinucleotide, oxidized (NAD(+)) to nicotinamide adenine dinucleotide, reduced. The rate of NAD(+) reduction is continuously monitored as a change in fluorescence using a microtiter plate reader. We show that this coupled enzyme assay is amenable to routine chemical compound screening.  相似文献   
67.
Here we describe a homogeneous assay for biotin based on bioluminescence resonance energy transfer (BRET) between aequorin and enhanced green fluorescent protein (EGFP). The fusions of aequorin with streptavidin (SAV) and EGFP with biotin carboxyl carrier protein (BCCP) were purified after expression of the corresponding genes in Escherichia coli cells. Association of SAV-aequorin and BCCP-EGFP fusions was followed by BRET between aequorin (donor) and EGFP (acceptor), resulting in significantly increasing 510 nm and decreasing 470 nm bioluminescence intensity. It was shown that free biotin inhibited BRET due to its competition with BCCP-EGFP for binding to SAV-aequorin. These properties were exploited to demonstrate competitive homogeneous BRET assay for biotin.  相似文献   
68.
ATP/ADP carriers (AACs) are essential to the cell as they exchange ATP produced in mitochondria for cytosolic ADP. Monoclonal antibodies against the isoform 2 of Saccharomyces cerevisiae AAC (ScAAC2) were used to probe the accessibility of the matrix loops 1 and 3 depending on the environment of the carrier. In mitochondrial membranes ScAAC2 was not recognized, whereas in dodecylmaltoside the antibodies bound to the carrier, suggesting that the epitopes are hidden in the native environment. Exposure of the epitopes by detergents was reversed by reconstitution of the carrier in phospholipids or by exchanging with detergents having a choline or a trimethylammonium head group. Circular dichroism spectroscopy on peptides representing the C-terminal regions of all three matrix loops showed that only phosphocholine detergents induced a structural reorganization. Since in addition phosphatidylcholine was found to be tightly associated with the purified carrier, the matrix loop regions are likely to be associated to the membrane by phosphatidylcholine.  相似文献   
69.
Very little is known about the cellular mechanisms controlling renal tubular amino acid transport. cAMP-dependent protein kinase (cAK) modulates the activity of several ion channels and pumps in biological membranes. The direct influence of cAK on transmembrane amino acid transport has not been investigated. We studied the effect the cAK-mediated phosphorylation on Na+- and Cl–-linked proline transport across the rat renal brush border membrane (BBM). cAK bioassay and Western hybridization analysis using cAK subunit-specific antibodies demonstrated the presence of the enzyme in the BBM. Brush border membrane vesicles (BBMV) were phosphorylated using the hyposmotic shock technique. cAMP, by activating endogenous cAK,and exogenous, highly purified catalytic subunit of cAK inhibited NaCl-dependent proline transport by phosphorylated, lysed/resealed BBMV compared with control vesicles. The cAK-mediated inhibition of proline uptake was completely abolished when phosphorylation at the cytoplasmic (inner side) of the membrane was prevented by isosmotic, rather than hyposmotic, phosphorylation. The cAK-induced inhibition of proline transport was reversed by the specific cAK inhibitor peptide, PKl. These data suggest that cAMP-dependent protein kinase-mediated phosphorylation modulates Na+- and Cl–-linked proline transport across the tubular luminal membrane.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号