首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   82篇
  国内免费   52篇
  2023年   7篇
  2022年   27篇
  2021年   26篇
  2020年   29篇
  2019年   48篇
  2018年   35篇
  2017年   41篇
  2016年   29篇
  2015年   34篇
  2014年   94篇
  2013年   66篇
  2012年   45篇
  2011年   42篇
  2010年   38篇
  2009年   55篇
  2008年   52篇
  2007年   61篇
  2006年   50篇
  2005年   35篇
  2004年   27篇
  2003年   30篇
  2002年   29篇
  2001年   18篇
  2000年   19篇
  1999年   26篇
  1998年   17篇
  1997年   15篇
  1996年   17篇
  1995年   11篇
  1994年   16篇
  1993年   24篇
  1992年   7篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   15篇
  1984年   15篇
  1983年   10篇
  1982年   11篇
  1981年   20篇
  1980年   8篇
  1979年   8篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1227条查询结果,搜索用时 62 毫秒
161.
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).  相似文献   
162.
163.
164.
Nuclei of the dinoflagellate Crypthecodinium cohnii strain Whd were isolated and nuclear proteins were extracted in three fractions, corresponding to the increasing affinity of these proteins to genomic DNA. One fraction contained two major bands (48- and 46-kDa) and antibodies specific to this fraction revealed two major bands by Western blot on nuclear extracts, corresponding to the 46- and 48-kDa bands. The 48-kDa protein was detected in G1 phase but not in M phase cells. An expression cDNA library of C. cohnii was screened with these antibodies, and two different open reading frames were isolated. Dinoflagellate nuclear associated protein (Dinap1), one of these coding sequences, was produced in E. coli and appeared to correspond to the 48-kDa nuclear protein. No homologue of this sequence was found in the data bases, but two regions were identified, one including two putative zinc finger repeats, and one coding for two potential W/W domains. The second coding sequence showed a low similarity to non-specific sterol carrier proteins. Immunocytolocalization with specific polyclonal antibodies to recombinant Dinap1 showed that the nucleus was immunoreactive only during the G1 phase: the nucleoplasm was immunostained, while chromosome cores and nuclear envelopes were negative.  相似文献   
165.
Mycoplasma hominis is associated with various infections, for which the treatment can be complex. Lipoic acid (LA) plays a role as a cofactor in eukaryotes, most Bacteria, and some Archea. Research of recent years has increasingly pointed to the therapeutic properties of exogenously supplemented LA. The present study was conducted on 40 strains of M. hominis cultured with the following LA concentrations: 1,200 μg/ml, 120 μg/ml, and 12 μg/ml. The bacterial colonies of each strain were counted and expressed as the number of colony-forming units/ml (CFU). The number of CFU in M. hominis strains obtained in the presence of LA was compared with the number of CFU in the strains grown in the media without LA. The obtained results indicated that the presence of LA in the medium did not affect the growth of M. hominis. The investigation of the influence of LA on the growth and survival of microbial cells not only allows for obtaining an answer to the question of whether LA has antimicrobial activity and, therefore, can be used as a drug supporting the treatment of patients infected with a given pathogenic microorganism. Such studies are also crucial for a better understanding of LA metabolism in the microbial cells, which is also important for the search for new antimicrobial drugs. This research is, therefore, an introduction to such further studies.  相似文献   
166.
Recent progress in peptide and glycopeptide chemistry make the preparation of peptide and glycopeptide dendrimers of acceptable purity, with designed structural and immunochemical properties reliable. New methodologies using unprotected peptide building blocks have been developed to further increase possibilities of their design and improve their preparation and separation. Sophisticated design of peptide and glycopeptide dendrimers has led to their use as antigens and immunogens, for serodiagnosis and other biochemical uses including drug delivery. Dendrimers bearing peptide with predetermined secondary structures are useful tools in protein de novo design. This article covers synthesis and applications of multiple antigen peptides (MAPs), multiple antigen glycopeptides (MAGs), multiple antigen peptides based on sequential oligopeptide carriers (MAP‐SOCs), glycodendrimers and template‐assembled synthetic proteins (TASPs). Part I deals with the development of various structural forms of MAPs as well as their application as antigens, immunogens, and for immunodiagnostic and biochemical purposes. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
167.
Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo‐LipD is very similar to other four‐helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo‐LipD are more restricted than in apo‐LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo‐LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg2+ or Ca2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo‐LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS‐ACP from A. friuliensis that would allow the acyl‐CoA ligase to interact preferentially with the LipD instead of binding to the FAS‐ACP.  相似文献   
168.
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.  相似文献   
169.
Context: Topical treatment of skin disease needs to be strategic to ensure high drug concentration in the skin with minimum systemic absorption.

Objective: The aim of this study was to produce semisolid nanostructured lipid carrier (NLC) formulations, for topical delivery of the corticosteroid drug, diflucortolone valerate (DFV), with minimum systemic absorption.

Method: NLC formulations were developed using a high shear homogenization combined with sonication, using Precirol® ATO5 or Tristearin® as the solid lipid, Capryol? or isopropyl myristate as the liquid lipid and Poloxamer® 407 as surfactant. The present study addresses the influence of different formulations composition as solid lipid, liquid lipid types and concentrations on the physicochemical properties and drug release profile from NLCs.

Results and discussion: DFV-loaded NLC formulations possessed average particle size ranging from 160.40?nm to 743.7?nm with narrow polydispersity index. The encapsulation efficiency was improved by adding the lipid-based surfactants (Labrasol® and Labrafil® M1944CS) to reach 68%. The drug release from the investigated NLC formulations showed a prolonged release up to 12?h. The dermatopharmacokinetic study revealed an improvement in drug deposition in the skin with the optimized DFV-loaded NLC formulation, in contrast to a commercial formulation.

Conclusion: NLC provides a promising nanocarrier system that work as reservoir for targeting topical delivery of DFV.  相似文献   

170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号