首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6264篇
  免费   57篇
  国内免费   67篇
  2023年   8篇
  2022年   25篇
  2021年   38篇
  2020年   51篇
  2019年   72篇
  2018年   49篇
  2017年   31篇
  2016年   38篇
  2015年   129篇
  2014年   392篇
  2013年   408篇
  2012年   417篇
  2011年   601篇
  2010年   500篇
  2009年   272篇
  2008年   214篇
  2007年   275篇
  2006年   186篇
  2005年   170篇
  2004年   176篇
  2003年   180篇
  2002年   122篇
  2001年   43篇
  2000年   75篇
  1999年   86篇
  1998年   69篇
  1997年   67篇
  1996年   86篇
  1995年   84篇
  1994年   77篇
  1993年   76篇
  1992年   50篇
  1991年   55篇
  1990年   51篇
  1989年   64篇
  1988年   47篇
  1987年   44篇
  1986年   46篇
  1985年   68篇
  1984年   187篇
  1983年   169篇
  1982年   173篇
  1981年   114篇
  1980年   111篇
  1979年   111篇
  1978年   24篇
  1977年   22篇
  1976年   16篇
  1975年   5篇
  1974年   5篇
排序方式: 共有6388条查询结果,搜索用时 32 毫秒
121.
细胞腊脂流动性在不同类属细胞存在着差异,其差异的程度取决于细胞的生理和生化特性。正常淋巴细胞、肺腺癌、肺鳞癌细胞以及结核细胞膜脂流动发生 分别为2.517±0.267、22.557±3.771,32.875±9.709和4.026±0.722。细胞分裂动力学与膜脂质流动性有关系。细胞分裂及其程度是膜脂质流动性差异的物质基础,同时并受细胞膜脂质的组成,脂蛋白生化以及外界因素的pH、Ca^2+等影响,  相似文献   
122.
用闪光动力学光谱仪测量了酰化紫膜LB膜中M衰减速率的变化。酰化紫膜LB膜的衰减无论是悬浮液状态,还是LB膜中,均比未修饰的要慢。在温度为20℃时,酰化紫膜LB随着相对湿度的增加,M衰减加快。在相对湿度较低时(RH34—75%),变化较平缓,即M的衰减加快不明显;在相对湿度较高时(RH84—95%),M衰减明显加快。温度的变化则随相对湿度不同而不同。相对湿度较低时,随着温度的升高,M衰减加快;相对湿度较高时,M衰减反而减慢。酰化紫膜悬浮液的M衰减随着温度的升高而明显加快.这说明酰化紫膜LB膜中BR水合程度可能是直接影响M衰减的因素之一。  相似文献   
123.
124.
Optical methods to measure membrane transport processes   总被引:6,自引:0,他引:6  
  相似文献   
125.
3-O-(4-benzoyl)benzoyl ATP (BzATP) was used as a photoaffinity analog of ATP to label potential ATP receptors in ciliated cells. Like ATP, without photoactivation, BzATP stimulated the ciliary beat frequency in tissue culture up to threefold. Irradiation of intact cells in the presence of [-32P]BzATP followed by SDS-PAGE and autoradiography revealed two labeled proteins with molecular masses of 46 and 96 kDa (p46 and p96). Photolabeling of both proteins was susceptible to digestion with trypsin, implying that the labeled proteins are at least partially exposed on the extracellular surface of the plasma membrane. The dependence of 32P incorporation in both proteins on [-32P]BzATP concentration was similar. Labeling of p46 but not p96 required Ca2+ or Mg2+. Various nucleotides stimulated the ciliary frequency, and inhibited the photolabeling of p46 and p96. The rank order of apparent affinity for p46 is: ATP ÃDP>GTPS>ADP S, UTP, 2MeSATP, AMP-PNP >AMP-PCP>AMP>adenosine; for p96 it is: ADPADP S ATP AMP-PCP, AMP-PNP>GTPS AMP>2MeSATP, UTP, adenosine. The rank of stimulation of ciliary beat frequency is: ADPS, UTP 2MeSATP, GTPS, AMP-PNP, ATPADP>AMPPCP>adenosine>AMP. These results suggest the involvement of p46 in the stimulatory effect of extracellular ATP on the ciliary beat, as a P2 purinoceptor. On the other hand, p96 may represent a P2 purinoceptor or an ectonucleotidase.This work was supported by grants (to Z.P. and to V.S-B.) from the Fund for Basic Research administered by the Israel Academy of Science and Humanities.  相似文献   
126.
Gap junctions, collections of membrane channels responsible for intercellular communication, contain two paired hemichannels (also called connexons). We have investigated conditions for splitting the membrane pair using urea. We have developed a protocol which consistently splits the gap junction samples with 60–90% efficiency. Our results indicate that hydrophobic forces are important in holding the two connexons together but that Ca2+ ions are also important in the assembly of the membrane pair. Greater yields and better structural integrity of split junctions were obtained with a starting preparation of gap junctions which had been detergent treated. Image analysis of edge views of single connexon layers reveal an asymmetry in the appearance of the cytoplasmic and extracellular surface. Cryo-electron microscopy and image analysis of split junctions show that the packing and structural detail of membranes containing arrays of single connexons are the same as for intact junctions, and that the urea treatment causes no gross structural changes in the connexon assembly.The antibodies used to analyze the protein composition in our samples were the generous gift of Dr. David Paul. We thank Dr. Camillo Peracchia for sending us a preprint of his chapter on molecular mechanisms of connexon gating and docking which helped guide our thinking about interconnexon forces and John Badger for information on divalent cation sites in protein structure. We thank Amani Thomas-Yusuf for technical assistance. The photographic expertise of Marie Craig is gratefully acknowledged. This work was funded by National Institutes of Health GM43217 to G.E.S. and GM18974 to D.A.G.  相似文献   
127.
The high-molecular-mass cytochromes c (Hmcs) from the sulfate-reducing bacteria Desulfovibrio gigas and Desulfovibrio vulgaris (Hildenborough) were found to be strongly bound to the cytoplasmic membrane. After detergent solubilization they were shown to be water soluble and to be similar to those previously isolated from the soluble fractions in terms of N-terminal sequence, molecular mass, UV-visible and EPR spectroscopies. In D. gigas, higher amounts of Hmc can be obtained from the membranes than from the soluble fraction. This enabled further characterization of both cytochromes. The apparent heme reduction potentials of both Hmcs, determined at pH 7.5 through visible and EPR redox titrations, span a large range of redox potentials, approximately between 0 and –280?mV, and can be roughly divided into three groups: four to five hemes have E 0s of –30?mV to –100?mV, three to four hemes have E 0s around –170?mV, and seven to eight hemes have a lower E 0 of –250 to –280?mV. Several of these redox potentials are strongly pH dependent. Mössbauer studies of oxidized and reduced D. vulgaris Hmc show that this protein contains two high-spin hemes in both oxidation states. The rate of reduction of both Hmcs with the periplasmic hydrogenases from the corresponding organisms is extremely slow.  相似文献   
128.
In the giant-celled marine algae Valonia utricularis the turgor-sensing mechanism of the plasmalemma and the role of the tonoplast in turgor regulation is unknown because of the lack of solid data about the individual electrical properties of the plasmalemma and the vacuolar membrane. For this reason, a vacuolar perfusion technique was developed that allowed controlled manipulation of the vacuolar sap under turgescent conditions (up to about 0.3 MPa). Charge-pulse relaxation studies on vacuolarly perfused cells at different turgor pressure values showed that the area-specific resistance of the total membrane barrier (tonoplast and plasmalemma) exhibited a similar dependence on turgor pressure as reported in the literature for nonperfused cells: the resistance assumed a minimum value at the physiological turgor pressure of about 0.1 MPa. The agreement of the data suggested that the perfusion process did not alter the transport properties of the membrane barrier. Addition of 16 μm of the H+-carrier FCCP (carbonylcyanide p-trifluoromethoxyphenyhydrazone) to the perfusion solution resulted in a drop of the total membrane potential from +4 mV to −22 mV and in an increase of the area-specific membrane resistance from 6.8 × 10−2 to 40.6 × 10−2Ωm2. The time constants of the two exponentials of the charge pulse relaxation spectrum increased significantly. These results are inconsistent with the assumption of a high-conductance state of the tonoplast (R. Lainson and C.P. Field, J. Membrane Biol. 29:81–94, 1976). Depending on the site of addition, the pore-forming antibiotics nystatin and amphotericin B affected either the time constant of the fast or of the slow relaxation (provided that the composition of the perfusion solution and the artificial sea water were replaced by a cytoplasma-analogous medium). When 50 μm of the antibiotics were added externally, the fast relaxation process disappeared. Contrastingly, the slow relaxation process disappeared upon vacuolar addition. The antibiotics cannot penetrate biomembranes rapidly, and therefore, the findings suggested that the fast and slow relaxations originated exclusively from the electrical properties of the plasmalemma and the tonoplast respectively. This interpretation implies that the area-specific resistance of the tonoplast is significantly larger than that of the plasmalemma (consistent with the FCCP data) and that the area-specific capacitance of the tonoplast is unusually high (6.21 × 10−2 Fm−2 compared to 0.77 × 10−2 Fm−2 of the plasmalemma). Thus, we have to assume that the vacuolar membrane of V. utricularis is highly folded (by a factor of about 9 in relation to the geometric area) and/or contains a fairly high concentration of mobile charges of an unknown electrogenic ion carrier system. Received: 22 October 1996/Revised: 16 January 1997  相似文献   
129.
Abstract: Although the myelin membrane contains only a small set of major proteins, more sensitive assays indicate the presence of a plethora of uncharacterized proteins. We have used an antibody perturbation approach to reversibly block the differentiation of prooligodendroblasts into myelinating cells, and, in combination with a differential screening procedure, identified novel mRNAs that are activated during this period. One cDNA, TPO1, recognizes a 5.5-kb mRNA that is strongly up-regulated in oligodendrocytes after release of the differentiation block and that is expressed at high levels in brain tissue during active myelination. This cDNA represents at least two mRNAs differing from each other in their 5'-termini. The TPO1 cDNA contains an open reading frame of 1,380 bp, encoding a protein of 51.8 kDa with a predicted pl of 9.1 that contains two regions homologous to nonclassic zinc finger motifs. Subcellular localization studies suggest the enriched presence of TPO1 in spherical structures along the major cytoplasmic processes of oligodendrocytes. TPO1, along with homologues expressed in testis, placenta, and PC12 cells, form a novel family of proteins with multiple hydrophobic domains possibly serving as membrane spanning regions. We postulate that in oligodendrocytes, TPO1 encodes a protein factor involved in myelin biogenesis.  相似文献   
130.
Characterization of the Palmitoylation Domain of SNAP-25   总被引:5,自引:2,他引:3  
Abstract: SNAP-25 (synaptosomal associated protein of 25 kDa) is a neural specific protein that has been implicated in the synaptic vesicle docking and fusion process. It is tightly associated with membranes, and it is one of the major palmitoylated proteins found in neurons. The functional role of palmitoylation for SNAP-25 is unclear. In this report, we show that the palmitate of SNAP-25 is rapidly turned over in PC12 cells, with a half-life of ∼3 h, and the half-life for the protein is 8 h. Mutation of Cys to Ser at positions 85, 88, 90, and 92 reduced the palmitoylation to 9, 21, 42, and 35% of the wild-type protein, respectively. Additional mutations of either Cys85,88 or Cys90,92 nearly abolished palmitoylation of the protein. A similar effect on membrane binding for the mutant SNAP-25 was observed, which correlated with the degree of palmitoylation. These results suggest that all four Cys residues are involved in palmitoylation and that membrane association of SNAP-25 may be regulated through dynamic palmitoylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号