首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6594篇
  免费   60篇
  国内免费   107篇
  6761篇
  2023年   9篇
  2022年   27篇
  2021年   39篇
  2020年   53篇
  2019年   75篇
  2018年   52篇
  2017年   36篇
  2016年   38篇
  2015年   133篇
  2014年   399篇
  2013年   430篇
  2012年   420篇
  2011年   602篇
  2010年   504篇
  2009年   279篇
  2008年   220篇
  2007年   282篇
  2006年   188篇
  2005年   172篇
  2004年   178篇
  2003年   191篇
  2002年   131篇
  2001年   47篇
  2000年   74篇
  1999年   90篇
  1998年   70篇
  1997年   68篇
  1996年   85篇
  1995年   83篇
  1994年   91篇
  1993年   88篇
  1992年   51篇
  1991年   55篇
  1990年   53篇
  1989年   65篇
  1988年   49篇
  1987年   43篇
  1986年   45篇
  1985年   78篇
  1984年   209篇
  1983年   203篇
  1982年   214篇
  1981年   142篇
  1980年   130篇
  1979年   128篇
  1978年   44篇
  1977年   31篇
  1976年   26篇
  1975年   9篇
  1974年   16篇
排序方式: 共有6761条查询结果,搜索用时 0 毫秒
61.
Magnetic resonance studies reveal a marked difference between the binding of α-tocopherol and that of the corresponding acetate (vitamin E acetate) with dipalmitoylphosphatidylcholine (DPPC) vesicles. This is reflected in differences in the phase-transition curves of the DPPC vesicles incorporated with the two compounds, as well as in the 13C relaxation times and line widths. A model for the incorporation of these molecules in lipid bilayers has been suggested. α-Tocopherol binds strongly with the lipids, possibly through a hydrogen bond formation between the hydroxyl group of the former and one of the oxygen atoms of the latter. The possibility of such a hydrogen bond formation is excluded in vitamin E acetate, which binds loosely through the normal hydrophobic interaction. The model for lipid-vitamin interaction explains the in vitro decomposition of H2O2 by α-tocopherol. α-Tocopherol in conjuction with H2O2 can also act as a free-radical scavenger in the lipid phase. The incorporation of α-tocopherol and vitamin E acetate in DPPC vesicles enhances the permeability of lipid bilayers for small molecules such as sodium ascorbate.  相似文献   
62.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   
63.
N,N′-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstitued mitochondrial cytochrome b-c1 complex. DCCD inhibits equally electron flow and proton translocation (i.e., the H+e? ratio is not affected) catalysed by the enzyme reconstituted into phospholipid vesicles. The inhibitory effects are accompanied by structural alterations in the polypeptide pattern of both isolated and reconstituted enzyme. Cross-linking was observed between subunits V (iron-sulfur protein) and VII, indicating that these polypeptides are in close proximity. A clear correlation was found between the kinetics of inhibition of enzymic activity and the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C]DCCD was also observed, to all subunits with the isolated enzyme and preferentially to cytochrome b with the reconstituted vesicles; in both cases, however, it was not correlated kinetically with the inhibition of the enzymic activity.  相似文献   
64.
Microvessels were isolated from canine cerebral cortex, and the composition of the endothelial cell membrane was investigated. Endothelial cell membranes were separated from the surrounding basement membrane, solubilized, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in 12% gels. Staining with Coomassie Blue revealed a characteristic banding pattern of at least 12 major proteins with apparent molecular weights between 14,000 and 250,000. When proteins from red blood cell ghosts were run simultaneously, no similarities were observed, except for proteins at apparent molecular weights of 43,000 (band 3) and 35,000 (band 4). These two proteins migrated exactly to the positions of the erythrocyte proteins actin and glyceraldehyde 3-phosphate dehydrogenase, respectively. Membrane glycoproteins in gels were also examined by the use of fluorescent lectins. Of the fluorescein isothiocyanate-conjugated (FITC) lectins tested, only FITC-concanavalin A had an affinity for any membrane components. Diazotized [125I]iodosulfanilic acid, a membrane-impermeable reagent, was used to label the internal (lumen) cell surface and the external (antilumen) cell surface. Autoradiography and determination of radioactivity levels in gel slices showed that several proteins were specifically labeled, and that major differences in radioactivity of proteins existed in internal and external labeling experiments. It is concluded that the protein composition of the luminal membrane is different from that of the antiluminal membrane.  相似文献   
65.
The aim of this work was to identify proteins specific for plant cell membranes which could then be used as unique markers. A crude membrane fraction was isolated from corn coleoptiles and separated on non-linear sucrose density gradients. Separation of endoplasmic reticulum (NADH-cytochrome c reductase), mitochondria (cytochrome c oxidase), golgi (inosine diphosphatase), and plasma membranes (N-1-naphthylphthalamic acid-binding) was achieved. The membrane proteins from the gradient fractions were separated using sodium dodecyl sulphate-poly-acrylamide gel electrophoresis and the gels stained with coomassie blue or with concanavalin A/peroxidase to detect glycoproteins. Proteins specific for the various membranes were identified. Five proteins including two glycoproteins were plasma membrane markers. Protoplasts were isolated and iodinated using lactoperoxidase/glucose oxidase covalently attached to beads. Eleven iodinated proteins were found and three of these corresponded to proteins specifically associated with plasma membranes in the density gradients. Two methods for detecting Ca2+-binding proteins following sodium dodecylsulphate polyacrylamide gel electrophoresis were employed. The majority of such proteins were found in the endoplasmatic reticulum and one was specific for plasma membranes. In vitro and in vivo phosphorylation of membrane proteins was examined and the majority of proteins phosphorylated were glycoproteins. Two of the phosphorylated proteins (Mr=110,000 and 20,000) were also iodinated on protoplasts and may be part of the plasma membrane ATPases.Abbreviations ER endoplasmic reticulum - IDP inosine diphosphate - NPA N-1-naphthylphthalamic acid  相似文献   
66.
Abstract: Free and membrane-bound polysomes were isolated from the cerebral hemispheres and cerebellum of the young adult rabbit. The two polysomal populations were translated in an mRNA-dependent cell-free system derived from rabbit reticulocytes. Analysis of the [35S]methionine-labeled translation products on two-dimensional polyacrylamide gels indicated an efficient separation of the two classes of brain polysomes. The relative synthesis of S100 protein by free and membrane- bound polysomes was determined by direct immuno-precipitation of the cell-free translation products in the presence of detergents to reduce nonspecific trapping. Synthesis of S100 protein was found to be twofold greater on membrane-bound polysomes compared with free polysomes isolated from either the cerebral hemispheres or the cerebellum. In addition, the proportion of poly- (A+)mRNA coding for SlOO protein was also twofold greater in membrane-bound polysomes compared with free polysomes isolated from the cerebral hemispheres. These results indicate that the cytoplasmic S100 protein is synthesized predominantly on membrane-bound polysomes in the rabbit brain. We suggest that the nascent S100 polypeptide chain translation complex is attached to the rough endoplasmic reticulum by an ionic interaction involving a sequence of 13 basic amino acids in S100 protein.  相似文献   
67.
Effect of fenitrothion (phosphorothioic acid, 0,0-dimethyl 0-4-nitro-m-tolyl ester), an organophosphorous insecticide, on membrane permeability employing the leakage of betacyanin and electrolytes as the criteria were studied in beet root(Beta vulgaris) discs. The leakage of both betacyanin and electrolytes increased with increasing concentrations (10–150 ppm) of fenitrothion in the incubation medium. At 0.33 mM the increase in electrolyte leakage was approximately linear for the first 6h, while the increase in betacyanin leakage started with a lag of about 2 h. Long term incubation (24 h) showed a biphasic nature (in the semilog plot) for the increase in betacyanin leakage, while the increase in electrolyte leakage appeared more complex. In the control sample, the Arrhenius plots (25–50°C) of leakage showed a break at 40°C. In treated samples no break was observed, but the slope decreased (for both electrolyte and betacyanin leakage) as compared to the respective slopes in the control in the temperature region greater than 40°C. The results are discussed in terms of the possible effect of the insecticide on the active transport in plant membranes  相似文献   
68.
Irradiation in the presence of O2, with near-UV light of five promazine (PZ) derivatives added to erythrocyte ghost membranes, causes covalent cross-linking between proteins as revealed by a progressive decrease in the amounts of proteins separable by electrophoresis after denaturation. The induction of cross-links in the two spectrin subunits is a single-hit process as a function of the irradiation time; relatively the rate constants (in min?1) of the photoreactions were 0.060 with chlorpromazine (CPZ), 0.039 with methoxypromazine (MTPZ), 0.031 with PZ, 0.029 with triflupromazine (TFPZ) and 0.006 with acepromazine (ACPZ).A main photochemical intermediate implicated in the spectrin aggregation seems to be the cation radical of the PZ derivatives. Indeed, (i) the chemically generated cation radicals can induce the reaction in the dark; (ii) the photoaggregation is regularly reduced upon addition of increasing concentrations of NaN3; (iii) NaN3 similarly affects the amount of cross-links induced by the isolated cation radicals. Hydroxyl radicals are also involved in the photocross-linking when the reaction is initiated only by MTPZ and not by the other sensitizers.In the absence of oxygen during irradiation, PZ, MTPZ and ACPZ completely loose their cross-linking activities whereas CPZ and TFPZ remain as efficient as in the presence of oxygen.  相似文献   
69.
The characteristics of Cl transport in isolated tonoplast vesicles from red-beet (Beta vulgaris L.) storage tissue have been investigated using the Cl-sensitive fluorescent probe, 6-methoxy-1-(3-sulfonatopropyl)-quinolinium (SPQ). The imposition of (inside) positive diffusion potentials, generated with K+ and valinomycin, increased the initial rate of Cl transport, demonstrating that Cl could be electrically driven into the vesicles. Chloride influx was unaffected by SO 4 2- , but was competitively blocked by NO 3 , indicating that both Cl and NO 3 may be transported by the same porter. In some preparations, increases in free-Ca2+ concentration from 10–8 to 10–5 mol·dm–3 caused a significant decrease in Cl influx, which may indicate that cytosolic Ca2+ concentration has a role in controlling Cl fluxes at the tonoplast. However, this effect was only seen in about 50% of membrane preparations and some doubt remains over its physiological significance. A range of compounds known to block anion transport in other systems was tested, and some partially blocked Cl transport. However, many of these inhibitors interfered with SPQ fluorescence and so only irreversible effects could be tested. The results are discussed in the context of recent advances made using the patch-clamp technique on isolated vacuoles.Abbreviations and Symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino]propane - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - membrane potential - pH pH gradient - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl] glycine  相似文献   
70.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号