首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   21篇
  国内免费   14篇
  2022年   13篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   8篇
  2015年   14篇
  2014年   16篇
  2013年   71篇
  2012年   13篇
  2011年   11篇
  2010年   18篇
  2009年   21篇
  2008年   19篇
  2007年   23篇
  2006年   22篇
  2005年   19篇
  2004年   15篇
  2003年   21篇
  2002年   15篇
  2001年   5篇
  2000年   16篇
  1999年   17篇
  1998年   18篇
  1997年   32篇
  1996年   27篇
  1995年   15篇
  1994年   20篇
  1993年   23篇
  1992年   18篇
  1991年   31篇
  1990年   18篇
  1989年   28篇
  1988年   20篇
  1987年   21篇
  1986年   26篇
  1985年   8篇
  1984年   6篇
  1982年   10篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   1篇
  1976年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1970年   8篇
排序方式: 共有758条查询结果,搜索用时 15 毫秒
71.
Resistance to a peanut-parasitic population of Meloidogyne javanica and an undescribed Meloidogyne sp. in peanut breeding lines selected for resistance to Meloidogyne javanica was examined in greenhouse tests. The interspecific hybrid TxAG-7 was resistant to reproduction of Meloidogyne javanica, M. javanica, and Meloidogyne sp. An Meloidogyne javanica-resistant selection from the second backcross (BC) of TxAG-7 to the susceptible cultivar Florunner also was resistant to M. javanica but appeared to be segregating for resistance to the Meloidogyne sp. When reproduction of M. javanica and Meloidogyne javanica were compared on five BC4F3 peanut breeding lines, each derived from Meloidogyne javanica-susceptible BC4F2 individuals, all five lines segregated for resistance to M. javanica, whereas four of the lines appeared to be susceptible to Meloidogyne javanica. These data indicate that several peanut lines selected for resistance to Meloidogyne javanica also contain genes for resistance to populations of M. javanica and the undescribed Meloidogyne sp. that are parasitic on peanut. Further, differences in segregation patterns suggest that resistance to each Meloidogyne sp. is conditioned by different genes.  相似文献   
72.
The reproduction of single egg-mass isolates of Meloidogyne javanica from Crete that differed in virulence were compared on tomato (Lycopersicon esculentum) genotypes homozygous or heterozygous for the Mi gene. The reproduction of three isolates with partial virulence was much greater on tomato genotypes heterozygous for the Mi gene (cultivars Scala, Bermuda, and 7353) than on two homozygous genotypes (F8 inbred lines derived from Scala). The reproduction of a highly virulent isolate on the homozygous and heterozygous genotypes was similar to that on a susceptible cultivar. These results pose questions regarding the nature of partial virulence and indicate a quantitative effect of the Mi gene in relation to such virulence.  相似文献   
73.
Arthrobotrys dactyloidesgrew readily in shaken flasks containing glucose corn steep powder and 8–10 g dry wt of fungal biomass/liter medium was usually produced in 5–6 days. However, it was difficult to convert this biomass into a viable, granulated product suitable for commercial use in biological control. Formulations prepared using kaolin and vermiculite as carriers and gum arabic as a binder showed poor viability when biomass was harvested from liquid culture, mixed with formulation ingredients, granulated, and then dried to a moisture content of less than 5%. Inclusion of a solid-phase incubation step following granulation and prior to drying (incubation of moist granules for 3 days at 25°C in a sterile plastic bag aerated with sterile air) markedly improved biological activity. When granules produced in this manner were placed on a glass slide in field soil, hyphae proliferated from granules and always produced traps. Seven experiments in soil microcosms showed that formulations which had been subjected to solid phase incubation prior to drying consistently reduced numbers ofMeloidogyne javanicajuveniles by more than 90%. In seven glasshouse experiments in which field soils were treated with granules (10 g/liter) and planted to tomatoes, the number of galls induced by the nematode was reduced by 57–96%.  相似文献   
74.
Aims: To determine the potential of the plant‐parasitic nematode Meloidogyne javanica to serve as a temporary reservoir for Escherichia coli. Methods and Results: The adhesion to and persistence of E. coli on the surface of M. javanica were evaluated at different times and temperatures. A pure culture of green fluorescent protein (GFP) tagged E. coli was mixed with ca. 1000 J2 M. javanica for 2 h at 25°C. The nematodes were then washed and the rate of the adhesion of the bacteria to the nematodes was determined by counting the viable nematode‐associated E. coli, and by fluorescence microscopy. A dose‐dependent adhesion rate was observed only at a bacterium to nematode ratio of 104–106 : 1. The adhesion of E. coli to the nematodes was also tested over a 24 h‐period at 4°C, 25°C and 37°C. At 4°C and 37°C, maximal adhesion was observed at 5 h; whereas at 25°C, maximal adherence was observed at 8 h. Survival experiments showed that the bacteria could be detected on the nematodes for up to 2 weeks when incubated at 4°C and 25°C, but not at 37°C. Conclusions: Under laboratory conditions, at 4°C and 25°C, M. javanica could serve as a temporary vector for E. coli for up to 2 weeks. Significance and Impact of the Study: These findings support the hypothesis that, in the presence of high concentrations of E. coli, M. javanica might serve as a potential vehicle for the transmission of food‐borne pathogens.  相似文献   
75.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   
76.
Use of resistant cultivars is a desirable approach to manage the peanut root-knot nematode (Meloidogyne arenaria). To incorporate resistance into commercially acceptable cultivars requires reliable, efficient screening methods. To optimize the resistance screening protocol, a series of greenhouse tests were done using seven genotypes with three levels of resistance to M. arenaria. The three resistance levels could be separated based on gall indices as early as two weeks after inoculation (WAI) using 8,000 eggs of M. arenaria per plant, while four or more weeks were needed when 1,000–6,000 eggs/plant were used. High inoculum densities (over 8,000 eggs/plant) were needed to separate the three resistance levels based on eggs per gram of root within eight WAI. A gall index based on percentage of galled roots could separate the three resistance levels at lower inoculum levels and earlier harvest dates than other assessment methods. The use of eggs vs. second-stage juveniles (J2) as inoculum provided similar results; however, it took three to five more days to collect J2 than to collect eggs from roots. Plant age affected gall index and nematode reproduction on peanut, especially on the susceptible genotypes AT201 and D098. The genotypes were separated into their correct resistance classes when inoculated 10 to 30 days after planting, but were not separated correctly when inoculated on day 40.  相似文献   
77.
Root-knot nematodes (RKN) are the most serious plant parasitic nematodes having a broad host range exceeding 2,000 plant species. Quercus brantii Lindl. and Q. infectoria Oliv are the most important woody species of Zagros forests in west of Iran where favors sub-Mediterranean climate. National Botanical Garden of Iran (NBGI) is scheduled to be the basic center for research and education of botany in Iran. This garden, located in west of Tehran, was established in 1968 with an area of about 150 ha at altitude of 1,320 m. The Zagros collection has about 3-ha area and it has been designed for showing a small pattern of natural Zagros forests in west of Iran. Brant’s oak (Q. brantii) and oak manna tree (Q. infectoria) are the main woody species in Zagros collection, which have been planted in 1989. A nematological survey on Zagros forest collection in NBGI revealed heavily infection of 24-yr-old Q. brantii and Q. infectoria to RKN, Meloidogyne hapla. The roots contained prominent galls along with egg sac on the surface of each gall. The galls were relatively small and in some parts of root several galls were conjugated, and all galls contained large transparent egg masses. The identification of M. hapla was confirmed by morphological and morphometric characters and amplification of D2-D3 expansion segments of 28S rRNA gene. The obtained sequences of large-subunit rRNA gene from M. hapla was submitted to the GenBank database under the accession number KP319025. The sequence was compared with those of M. hapla deposited in GenBank using the BLAST homology search program and showed 99% similarity with those KJ755183, GQ130139, DQ328685, and KJ645428. The second stage juveniles of M. hapla isolated from Brant’s oak (Q. Brantii) showed the following morphometric characters: (n = 12), L = 394 ± 39.3 (348 to 450) µm; a = 30.9 ± 4 (24.4 to 37.6); b = 4.6 ± 0.44 (4 to 5.1); b΄ = 3.3 ± 0.3 (2.7 to 3.7), c = 8.0 ± 1 (6.2 to 10.3), ć = 5.3 ± 0.8 (3.5 to 6.3); Stylet = 12.1 ± 0.8 (11 to 13) µm; Tail = 50 ± 5.6 (42 to 57) µm; Hyaline 15 ± 1.8 (12 to 18) µm. Oak manna, Q. infectoria population of second stage juveniles clearly possessed short body length and consequently other morphometric features were less than those determined for Q. brantii population, and these features were: (n = 12), L = 359.0 ± 17.3 (319 to 372) µm; a = 28.6 ± 3 (22.8 to 31); b = 5.0 ± 0.3 (4.8 to 5.2); b΄ = 3.3 ± 0.2 (3 to 3.6), c = 8.1 ± 0.5 (7.4 to 8.8), ć = 4.7 ± 0.5 (3.9 to 5.2); Stylet = 11.4 ± 0.7 (10 to 12) µm; Tail = 44 ± 1.8 (42 to 47) µm; Hyaline 12 ± 1.7 (10 to 15) µm. To date two species of Meloidogyne, M. querciana Golden, 1979 and M. christiei Golden and Kaplan, 1986 have been reported to parasitize oaks (Quercus spp.) from the United States of America. M. querciana was found on pin oak Quercus palustris in Virginia. The oak RKN infected pine oak, red oak, and American chestnut heavily in greenhouse tests (Golden, 1979). The other species M. christiei was described from turkey oak and Q. laevis in Florida, which has monospecific host range (Golden and Kaplan, 1986). Both of these RKN species seem to be restricted to the United States of America and have not been reported from other place. According to our knowledge this is the first report of occurrence of M. hapla on Q. brantii and Q. infectoria in the world. This study includes these two oak species to the host range of RKN, M. hapla for the world and expands the information of RKN, M. hapla host ranges on oaks.  相似文献   
78.
Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots.  相似文献   
79.
Ex vitro composite plants: an inexpensive, rapid method for root biology   总被引:1,自引:0,他引:1  
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.  相似文献   
80.
Suppression of plant parasitic nematodes with nematode predators, parasites or antagonists is an eco-friendly approach than the toxic chemicals. In a study, soil borne fungi from the rhizosphere of major spice crops were collected from diverse cropping systems prevailing in three southern states of India. A series of in vitro studies were conducted using 73 freshly collected fungal isolates and 76 isolates obtained from other sources. Out of this 67 isolates were not parasitic on females of root-knot nematodes whereas 115 isolates, though colonized the egg masses, did not show any signs of parasitism on nematode eggs. Fifty-nine isolates showed 50-90% inhibition in egg hatch. Pochonia chlamydospora, Verticillium lecanii, Paecilomyces lilacinus, and few isolates of Trichoderma spp. showed >25% parasitism on root-knot nematode eggs. The most promising isolates in this study were one isolate each of Aspergillus (F.45), Fusarium (F.47), and Penicillium (F.59); three each isolates of Trichoderma (F.3, F.52, and F.60) and Pochonia (F.30 and Vc.3) Verticillium (Vl); and two isolates of fungi that could not be identified (F.28 and F.62). Parasitism by Aspergillus tamarii, Aspergillus ustus, Drechslera sp., Humicola sp., and Scopulariopsis sp. on root-knot nematode eggs or females, reported in the present study, are new reports.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号