首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2015年   4篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有21条查询结果,搜索用时 453 毫秒
11.
Melioidosis sepsis, caused by Burkholderia pseudomallei, is associated with high mortality due to an overwhelming inflammatory response. Plasmacytoid dendritic cells (pDC) are potent producers of type I interferons (IFN). This study investigated whether pDC and type I IFN play a role during the early stages of B. pseudomallei infection. Human and murine pDC internalised and killed B. pseudomallei as efficiently as murine conventional DC (cDC). pDC derived from B. pseudomallei-susceptible (BALB/c) mice demonstrated poor intracellular killing and increased IFN-alpha compared to pDC derived from B. pseudomallei-resistant (C57BL/6) mice. This is the first evidence of pDC bactericidal activity against B. pseudomallei infection.  相似文献   
12.

Background

The bacterium Burkholderia mallei is the etiological agent of glanders, a highly contagious, often fatal zoonotic infectious disease that is also a biodefense concern. Clinical laboratory assays that analyze blood or other biological fluids are the highest priority because these specimens can be collected with minimal risk to the patient. However, progress in developing sensitive assays for monitoring B. mallei infection is hampered by a shortage of useful biomarkers.

Results

Reasoning that there should be a strong correlation between the proteomes of infected tissues and circulating serum, we employed imaging mass spectrometry (IMS) of thin-sectioned tissues from Chlorocebus aethiops (African green) monkeys infected with B. mallei to localize host and pathogen proteins that were associated with abscesses. Using laser-capture microdissection of specific regions identified by IMS and histology within the tissue sections, a more extensive proteomic analysis was performed by a technique that combined the physical separation capabilities of liquid chromatography (LC) with the sensitive mass analysis capabilities of mass spectrometry (LC-MS/MS). By examining standard formalin-fixed, paraffin-embedded tissue sections, this strategy resulted in the identification of several proteins that were associated with lung and skin abscesses, including the host protein calprotectin and the pathogen protein GroEL. Elevated levels of calprotectin detected by ELISA and antibody responses to GroEL, measured by a microarray of the bacterial proteome, were subsequently detected in the sera of C. aethiops, Macaca mulatta, and Macaca fascicularis primates infected with B. mallei.

Conclusions

Our results demonstrate that a combination of multidimensional MS analysis of traditional histology specimens with high-content protein microarrays can be used to discover lead pairs of host-pathogen biomarkers of infection that are identifiable in biological fluids.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9079-4) contains supplementary material, which is available to authorized users.  相似文献   
13.
In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 Å resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATPbd) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 Å. These two BpAdk conformations may represent ‘open’ Adk sub-states along the preferential pathway to the ‘closed’ substrate-bound state.  相似文献   
14.
Co-occurrence of bacterial infections with type 2 diabetes (T2D) is a global problem. Melioidosis caused by Burkholderia pseudomallei is 10 times more likely to occur in patients with T2D, than in normoglycemic individuals. Using an experimental model of T2D, we observed that greater susceptibility in T2D was due to differences in proportions of infiltrating leucocytes and reduced levels of MCP-1, IFN-γ and IL-12 at sites of infection within 24 h post-infection. However, by 72 h the levels of inflammatory cytokines and bacteria were markedly higher in visceral tissue and blood in T2D mice. In T2D, dysregulated early immune responses are responsible for the greater predisposition to B. pseudomallei infection.  相似文献   
15.
Burkholderia pseudomallei, the causative agent of melioidosis, is an important pathogen in tropical regions of Australia and Southeast Asia. Antibiotic therapy can be ineffective in patients with acute septicaemic melioidosis. It has been proposed that adjunctive immunotherapy using granulocyte colony stimulating factor (G-CSF) combined with antibiotics may provide an alternative approach to antibiotics alone. We have developed a murine model for melioidosis that allows novel treatment approaches to be investigated. This study looked at the potential for murine G-CSF therapy both alone and as an adjunct in the treatment of acute disseminated B. pseudomallei infection in BALB/c mice. A number of therapeutic variables involving ceftazidime and recombinant murine G-CSF were studied. Surviving mice were sacrificed and splenic bacterial loads were determined. Combining recombinant murine G-CSF with ceftazidime offered no advantage over ceftazidime alone. Pre-treatment with recombinant murine G-CSF did not demonstrate a significant benefit. This would suggest that adjunct immunotherapy using G-CSF is of limited benefit.  相似文献   
16.
Optimising DNA extraction from clinical samples for Burkholderia pseudomallei Type III secretion system real-time PCR in suspected melioidosis patients confirmed that urine and sputum are useful diagnostic samples. Direct testing on blood remains problematic; testing DNA extracted from plasma was superior to DNA from whole blood or buffy coat.  相似文献   
17.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   
18.
In the human pathogen Burkholderia pseudomallei, katG encodes the antioxidant defense enzyme catalase-peroxidase. Interestingly, a B. pseudomallei mutant, disrupted in katG, is hyperresistant to organic hydroperoxide. This hyperresistance is due to the compensatory expression of the alkyl hydroperoxide reductase gene (ahpC) and depends on a global regulator OxyR. The KatG-deficient mutant is also highly resistant to reactive nitrogen intermediates (RNI). When overproduced, the B. pseudomallei AhpC protein, protected cells against killing by RNI. The levels of resistance to both organic peroxide and RNI returned to those of the wild-type when the katG mutant was complemented with katG. These studies establish the partially overlapping defensive activities of KatG and AhpC.  相似文献   
19.
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized “in house” assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis. Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号