首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1319篇
  免费   92篇
  国内免费   85篇
  2024年   2篇
  2023年   21篇
  2022年   28篇
  2021年   36篇
  2020年   31篇
  2019年   40篇
  2018年   39篇
  2017年   26篇
  2016年   36篇
  2015年   41篇
  2014年   94篇
  2013年   100篇
  2012年   69篇
  2011年   59篇
  2010年   67篇
  2009年   55篇
  2008年   65篇
  2007年   76篇
  2006年   69篇
  2005年   56篇
  2004年   51篇
  2003年   33篇
  2002年   46篇
  2001年   30篇
  2000年   22篇
  1999年   26篇
  1998年   42篇
  1997年   26篇
  1996年   15篇
  1995年   11篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   10篇
  1990年   10篇
  1989年   19篇
  1988年   13篇
  1987年   9篇
  1986年   2篇
  1985年   11篇
  1984年   14篇
  1983年   8篇
  1982年   16篇
  1981年   6篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1496条查询结果,搜索用时 250 毫秒
21.
22.
The discovery of a third phosphoglucomutase locus (Pgm-3) in the house mouse is reported. Three alleles are recognized on the basis of differences in electrophoretic mobility and enzymatic activity. Pgm-3 a (fast mobility and high activity) is present in inbred strain C57BL/10J and 24 other strains; Pgm-3 b (slow mobility and high activity) is present in LP/Pas and six other strains; and Pgm-3 c (no detectable activity in any tissue tested) is present in strain DBA/2J and 14 other strains. Seventy-four recombinant inbred strains derived from progenitors that differed at Pgm-3 were used to study genic linkage. Pgm-3 is on chromosome 9 and is linked to Sep-1, d, Mod-1, and Ltw-3. Gene order and recombination frequencies are estimated as d 3.8±1.8% Pgm-3 2.3±1.2% Mod-1. Substrate specificities and cofactor requirements show that mouse Pgm-1 is homologous with human Pgm-2, mouse Pgm-2 with human Pgm-1, and mouse Pgm-3 with human Pgm-3.This research was supported in part by NIH Research Grant GM18684 from the National Institute of General Medical Sciences to B.A.T. and by grants from NIH A105531-02 and the Volkswagon Foundation to Jan Klein. J.H.N. was a recipient of a Fellowship from the Max-Planck-Gesellschaft, Munich. G.S. and J.K. were supported by funds from the Deutsche Forschungsgemeinschaft.  相似文献   
23.
24.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three categories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion.Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (ΔH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region.Cytochrome c and Al protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and ΔH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer.Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the ΔH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a ΔH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   
25.
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.  相似文献   
26.
The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non‐mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island‐averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large‐scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.  相似文献   
27.
Hepcidin is a key iron-regulatory hormone, the production of which is controlled by iron stores, inflammation, hypoxia and erythropoiesis. The regulation of iron by hepcidin is of clinical importance in thalassemia patients in which anemia occurs along with iron overload. The present study aimed to evaluate the correlation between serum hepcidin and ferritin levels in thalassemia patients. This cross-sectional study investigated 64 patients with thalassemia; 16 β-thalassemia major (BTM), 31 β-thalassemia/hemoglobin (Hb) E (BE), and 17 Hb H + AE Bart’s disease (Hb H + AE Bart’s). The levels of serum hepcidin and ferritin, and Hb of the three groups were measured. The median values of serum ferritin and Hb were significantly different among the three groups, whereas serum hepcidin values were not observed to be significantly different. The correlation of the serum hepcidin and ferritin levels was not statistically significant in any of the three groups of thalassemia patients with BTM, BE, or Hb H + AE Bart’s (r = −0.141, 0.065 and −0.016, respectively). In conclusion, no statistically significant correlations were observed between serum hepcidin with any variables including serum ferritin, Hb, age, labile plasma iron (LPI), and number of blood transfusion units among the three groups of thalassemia patients. Likely, the regulation of hepcidin in thalassemia patients is affected more by erythropoietic activity than iron storage.  相似文献   
28.
Abstract

In the present study, an additional combination of end‐points was applied on the natural populations of the common plantain, previously estimated using morphometric assays. Here, besides measuring developmental instability (DI), by determining the level of fluctuating asymmetry (FA) and the total amount of phenotypic variability (PV), we tried to distinguish the three natural populations under contrasting environmental conditions using the morphological data. Results obtained using both FA indices were the same; higher asymmetry levels in the reference than in the polluted environments were detected for leaf width, vein distances within a leaf and lobe length. The one‐way analysis of variance results revealed that there were significant differences in PV values among populations analysed for each character. When all leaf traits were considered together, the PV median value was significantly higher in Crni Lug leaves compared with leaves from other sites. The multivariate analysis of variance results revealed the significant effect of environment on both FA4 and PV values. The component scores of first factor (PC1) were significantly different between the Karaburma and Crni Lug populations. Besides, component scores of both PC1 and PC2 were significantly different between the Zemun and Crni Lug samples. The stepwise discriminant functional analysis results allowed us to identify a set of four variables, with a sufficient discriminating ability (75%).  相似文献   
29.
《Biomarkers》2013,18(5):378-384
Abstract

Context: Leukocytes have been found to be the predictor of outcome following acute coronary syndrome (ACS).

Objective: We sought to determine the relationship between leukocyte differentials and developing major adverse cardiac events (MACE) in patients with non-ST elevation ACS (NSTE-ACS).

Materials and methods: A total of 490 consecutive patients were enrolled, and MACE incidence was evaluated at long-term follow-up period.

Results: Total white blood cell (WBC) was higher in subjects occurring MACE. Moreover, elevated total WBC, ≥7.5?×?103/µL, independently predicted MACE.

Discussion and conclusion: Elevated admission total WBC can predict long-term MACE in NSTE-ACS patients better than other differentials.  相似文献   
30.
The intestinal microbiota has been reported to affect depression, a common mental condition with severe health-related consequences. However, what mediates the effect of the intestinal microbiota on depression has not been well elucidated. We summarize the roles of the mitochondria in eliciting beneficial effects on the gut microbiota to ameliorate symptoms of depression. It is well known that mitochondria play a key role in depression. An important pathogenic factor, namely inflammatory response, may adversely impact mitochondrial functionality to maintain cellular homeostasis. Dysfunction of mitochondria not only affects neuronal function but also reduces neuron cell numbers. We posit that the intestinal microbiota could affect neuronal mitochondrial function through short-chain fatty acids such as butyrate. Brain inflammatory processes could also be affected through the modulation of gut permeability and blood lipopolysaccharide levels. Aberrant mitochondria functionality coupled to adverse cellular homeostasis could be a key mediator for the effect of the intestinal microbiota on the progression of depression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号