首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   38篇
  国内免费   4篇
  2024年   2篇
  2023年   9篇
  2022年   19篇
  2021年   15篇
  2020年   23篇
  2019年   20篇
  2018年   21篇
  2017年   20篇
  2016年   13篇
  2015年   16篇
  2014年   31篇
  2013年   178篇
  2012年   21篇
  2011年   29篇
  2010年   16篇
  2009年   25篇
  2008年   25篇
  2007年   34篇
  2006年   34篇
  2005年   16篇
  2004年   30篇
  2003年   19篇
  2002年   21篇
  2001年   16篇
  2000年   19篇
  1999年   12篇
  1998年   12篇
  1997年   9篇
  1996年   16篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   10篇
  1991年   15篇
  1990年   13篇
  1989年   11篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1977年   2篇
排序方式: 共有846条查询结果,搜索用时 16 毫秒
41.
42.
In a previous report, we were unable to entrain one out of seven totally blind people with free-running endogenous melatonin rhythms to 10 mg of exogenous melatonin. This person had the longest circadian period (24.9 h) of the group. We now find that this person can be entrained to 0.5 mg of melatonin, but not to 20 mg. These results are consistent with the idea that too much melatonin may spill over onto the wrong zone of the melatonin phase–response curve.  相似文献   
43.
There is evidence that aging may impair phase‐shifting responses to light synchronizers, which could lead to disturbed or malsynchronized circadian rhythms. To explore this hypothesis, 62 elder participants (age, 58 to 84 years) and 25 young adults (age, 19 to 40 years) were studied, first with baseline 1‐wk wrist actigraphy at home and then by 72 h in‐laboratory study using an ultra‐short sleep‐wake cycle. Subjects were awake for 60 minutes in 50 lux followed by 30 minutes of darkness for sleep. Saliva samples were collected for melatonin, and urine samples were collected for aMT6s (a urinary metabolite of melatonin) and free cortisol every 90 minutes. Oral temperatures were also measured every 90 minutes. The timing of the circadian rhythms was not significantly more variable among the elders. The times of lights‐out and wake‐up at home and urinary free cortisol occurred earlier among elders, but the acrophases (cosinor analysis‐derived peak time) of the circadian rhythm of salivary melatonin, urinary aMT6s, and oral temperature were not significantly phase‐advanced among elders. The estimated duration of melatonin secretion was 9.9 h among elders and 8.4 h among young adults (p<0.025), though the estimated half‐life of blood melatonin was shorter among elders (p<0.025), and young adults had higher saliva melatonin and urinary aMT6s levels. In summary, there was no evidence for circadian desynchronization associated with aging, but there was evidence of some rearrangement of the internal phase‐angles among the studied circadian rhythms.  相似文献   
44.
This study investigates the possibility of an endogenous circadian rhythm in retinal cone function in humans. A full-field cone electroretinogram (ERG) was performed every 2?h for 24?h under continuous rod-saturating ambient white light (53 ±?30 lux; pupils dilated) in nine healthy subjects. Distinct circadian variations were superimposed upon a gradual decrease in cone responsiveness to light, demonstrated most reliably in the implicit times of b-wave and oscillatory potentials, and to a lesser extent in amplitude and a-wave implicit times. After mathematical correction of the linear trend, the cone response was found to be greatest around 20:00?h and least around 06:00?h. The phase of the ERG circadian rhythm was not synchronized with the phase of the salivary melatonin rhythm measured the previous evening. Melatonin levels measured under constant light on the day of ERG assessments were suppressed by 53% on average compared to melatonin profiles obtained previously under near-total darkness in seven participants. The progressive decline in cone responsiveness to light over the 24?h may reflect an adaptation of the cone-driven retinal system to constant light, although the mechanism is unclear. The endogenous rhythm of cone responsiveness to light may be used as an additional index of central or retinal circadian clock time. (Author correspondence: )  相似文献   
45.
Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9±8.2 yrs (mean±SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6±6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0±7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p?<?.028) and B (p?<?0.004). Experiment 2 showed significant phase advances in conditions A (p?<?0.018) and B (p?<?0.003) but not C (p?<?0.23), relative to condition D. In Experiment 3, only condition B (p?<?0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start of light treatment for all three experiments. The best fit curve applied to these data (R2?=?0.94) provided a partial phase-response curve with maximum advance at approximately 9–11 h and maximum delay at approximately 5–6 h following DLMO. These data suggest largest phase advances will result when light treatment is started between 06:00 and 08:00 h, and greatest phase delays will result from light treatment started between 02:00 to 03:00 h in entrained subjects with a regular sleep wake cycle (23:00 to 07:00 h).  相似文献   
46.
The circadian rhythm of core body temperature is associated with widespread physiological effects. However, studies with other more practical temperature measures, such as wrist (WT) and proximal temperatures, are still scarce. The aim of this study was to investigate whether obesity is associated with differences in mean WT values or in its daily rhythmicity patterns. Daily patterns of cortisol, melatonin, and different metabolic syndrome (MetS) features were also analyzed in an attempt to clarify the potential association between chronodisruption and MetS. The study was conducted on 20 normal-weight women (age: 38?±?11 yrs and BMI: 22?±?2.6?kg/m2) and 50 obese women (age: 42?±?10 yrs and BMI: 33.5?±?3.2?kg/m2) (mean?±?SEM). Skin temperature was measured over a 3-day period every 10?min with the “Thermochron iButton.” Rhythmic parameters were obtained using an integrated package for time-series analysis, “Circadianware.” Obese women displayed significantly lower mean WT (34.1°C?±?0.3°C) with a more flattened 24-h pattern, a lower-quality rhythm, and a higher intraday variability (IV). Particularly interesting were the marked differences between obese and normal-weight women in the secondary WT peak in the postprandial period (second-harmonic power [P2]), considered as a marker of chronodisruption and of metabolic alterations. WT rhythmicity characteristics were related to MetS features, obesity-related proteins, and circadian markers, such as melatonin. In summary, obese women displayed a lower-quality WT daily rhythm with a more flattened pattern (particularly in the postprandial period) and increased IV, which suggests a greater fragmentation of the rest/activity rhythm compared to normal-weight women. These 24-h changes were associated with higher MetS risk. (Author correspondence: )  相似文献   
47.
《Chronobiology international》2013,30(8):1564-1579
Daily rhythms in different biochemical and hematological variables have been widely described in either diurnal or nocturnal species, but so far no studies in the rhythms of these variables have been conducted in a dual-phasing species such as the degus. The Octodon degus is a rodent that has the ability to switch from diurnal to nocturnal activity under laboratory conditions in response to wheel-running availability. This species may help us discover whether a complete temporal order inversion occurs parallel to the inversion that has been observed in this rodent's activity pattern. The aim of the present study is to determine the phase relationships among 26 variables, including behavioral, physiological, biochemical, and hematological variables, during the day and at night, in diurnal and nocturnal degus chronotypes induced under controlled laboratory conditions through the availability of wheel running. A total of 39 male degus were individually housed under a 12:12 light-dark (LD) cycle, with free wheel-running access. Wheel-running activity (WRA) and body temperature (Tb) rhythms were recorded throughout the experiment. Melatonin, hematological, and biochemical variables were determined by means of blood samples obtained every 6?h (ZT1, ZT7, ZT13, and ZT19). In spite of great differences in WRA and Tb rhythms between nocturnal and diurnal degus, no such differences were observed in the temporal patterns of most of the biological variables analyzed for the two chronotypes. Variation was only found in plasma urea level and lymphocyte number. A slight delay in the phase of the melatonin rhythm was also observed. This study shows the internal temporal order of a dual-phasing mammal does not show a complete inversion in accordance with its activity and body temperature pattern; it would appear that the switching mechanism involved in the degu's nocturnalism is located downstream from the pacemaker. (Author correspondence: ).  相似文献   
48.
The specific circadian role proposed for endogenous melatonin production was based on a study of sighted people who took low pharmacological doses (500 µg) of this chemical signal for the “biological night”: the magnitude and direction of the induced phase shifts were dependent on what time of day exogenous melatonin was administered and were described by a phase‐response curve that turned out to be the opposite of that for light. We now report that lower (physiological) doses of up to 300 µg can entrain (synchronize) free‐running circadian rhythms of 10 totally blind subjects that would otherwise drift later each day. The resulting log‐linear dose‐response curve in the physiological range adds support for a circadian function of endogenous melatonin in humans. Efficacy of exogenous doses in the physiological range are of clinical significance for totally blind people who will need to take melatonin daily over their entire lifetimes in order to remain entrained to the 24 h day. Left untreated, their free‐running endocrine, metabolic, behavioral, and sleep/wake cycles can be almost as burdensome as not having vision.  相似文献   
49.
《Chronobiology international》2013,30(9):1206-1215
The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within ~2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4?h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.  相似文献   
50.
In all the vertebrates, synthesis of melatonin and its rhythm-generating enzyme arylalkylamine N-acetyltransferase (AANAT) reaches its peak in the pineal during the night in a daily light-dark cycle, but the role of different neuronal signals in their regulation were unknown for any fish. Hence, the authors used specific agonist and antagonists of receptors for different neuronal signals and regulators of intracellular calcium (Ca2+) and adenosine 3',5'-cyclic monophosphate (cAMP) in vitro to study their effects on the abundance of AANAT and titer of melatonin in the carp (Catla catla) pineal. Western blot analysis followed by quantitative analysis of respective immunoblot data for AANAT protein, radioimmunoassay of melatonin, and spectrophotometric analysis of Ca2+ in the pineal revealed stimulatory effects of both adrenergic (α1 and β1) and dopaminergic (D1) agonists and cholinergic (both nicotinic and muscarinic) antagonists, inhibition by both adrenergic and dopaminergic antagonists and cholinergic agonists, but independent of the influence of any agonists or antagonists of α2-adrenergic receptors. Band intensity of AANAT and concentration of melatonin in the pineal were also enhanced by the intracellular calcium-releasing agent, activators of both calcium channel and adenylate cyclase, and phophodiesterase inhibitor, but suppressed by inhibitor of calcium channel and adenylate cyclase as well as activator of phophodiesterase. Moreover, an inhibitory effect of light on the pineal AANAT and melatonin was blocked by both cAMP and proteasomal proteolysis inhibitor MG132. Collectively, these data suggest that dark-induced abundance of AANAT and melatonin synthesis in the carp pineal are a multineuronal function, in which both adrenergic (α1 and β1, but not α2) and dopaminergic signals are stimulatory, whereas cholinergic signals are inhibitory. This study also provides indications, though arguably not conclusive evidence, that in either case the neuronal mechanisms follow a signal-transduction pathway in which Ca2+ and cAMP may act as the intracellular messengers. It also appears that proteasomal proteolysis is a conserved event in the regulation of AANAT activity in vertebrates. (Author correspondence: )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号