首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3728篇
  免费   242篇
  国内免费   116篇
  2024年   8篇
  2023年   50篇
  2022年   63篇
  2021年   96篇
  2020年   88篇
  2019年   99篇
  2018年   79篇
  2017年   83篇
  2016年   96篇
  2015年   136篇
  2014年   172篇
  2013年   206篇
  2012年   143篇
  2011年   138篇
  2010年   121篇
  2009年   224篇
  2008年   227篇
  2007年   207篇
  2006年   205篇
  2005年   192篇
  2004年   141篇
  2003年   128篇
  2002年   118篇
  2001年   97篇
  2000年   131篇
  1999年   108篇
  1998年   94篇
  1997年   92篇
  1996年   98篇
  1995年   82篇
  1994年   67篇
  1993年   69篇
  1992年   40篇
  1991年   39篇
  1990年   19篇
  1989年   13篇
  1988年   27篇
  1987年   11篇
  1986年   13篇
  1985年   7篇
  1984年   13篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   10篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有4086条查询结果,搜索用时 718 毫秒
71.
摘要 目的:探讨自体输血与异体输血对创伤性颅脑损伤(TBI)开颅手术患者凝血功能、细胞免疫功能和神经损伤标志物的影响。方法:回顾性分析2019年4月~2022年5月期间在本院行开颅手术的120例TBI患者的临床资料。根据输血方式的不同将患者分为异体输血组(n=58,异体输血)和自体输血组(n=62,自体输血),观察两组临床指标、细胞免疫功能、凝血功能、神经损伤标志物和不良反应发生率情况。结果:两组患者手术出血量、输血量、输注含凝血成分血制品比例对比,差异无统计学意义(P>0.05)。自体输血组出院时CD3+、CD4+、CD4+/CD8+高于异体输血组,CD8+低于异体输血组(P<0.05)。两组出院时凝血酶原时间(PT)、凝血酶时间(TT)、纤维蛋白原(FIB)、活化部分凝血活酶时间(APTT)组间对比无统计学差异(P>0.05)。自体输血组出院时S100钙结合蛋白B(S100B)、神经胶质原纤维酸性蛋白(GFAP)、神经元特异性烯醇化酶(NSE)低于异体输血组(P<0.05)。两组不良反应发生率组间比较无差异(P>0.05)。结论:自体输血用于TBI开颅手术患者,对患者的凝血功能影响较小,同时还可改善机体细胞免疫功能,降低神经损伤标志物水平。  相似文献   
72.
The effects of bovine milk proteins on melanogenesis in B16 cells were examined. Both whey protein isolate and casein exhibited depigmenting properties. Among the major protein components of milk—including β-lactoglobulin, α-lactalbumin, α-, β-, and k-casein—only K-casein exhibited the depigmenting effect. However, the carboxyl terminal peptide of K-casein, glycomacropeptide, did not show this activity. Also, K-casein promoted the proliferation of the cells and inhibited the activity of tyrosinase in the cells. These results indicate that K-casein acts as a melanogenesis-suppressing modulator.  相似文献   
73.
The objectives of this research were to determine whether melanocortin receptors are characteristic (constant) membrane markers of human epidermal melanocytes. Methodologies were developed to visualize melanotropin receptors by scanning electron microscopy (SEM). Multiple copies (up to a hundred) of [Nle4,D-Phe7]α-MSH, a superpotent analog of α-melanocyte stimulating hormone (α-MSH), were conjugated to a macromo-lecular carrier (latex beads: microspheres). Incubation in the presence of the melanotropin-conjugated microspheres resulted in binding of human normal epidermal melanocytes to the beads. Almost every (possibly all) melanocyte possesses melanocortin receptors as visualized by SEM. Specificity of binding of the macromolecular conjugate was demonstrated by several studies: 1) Binding of melanocytes to the microspheres was specific since it could be blocked by prior incubation of the cells in the presence of the unconjugated hormone analog; 2) microspheres lacking bound ligand did not bind to the melanocytes; 3) micro-spheres that were first treated with reducing agents (e.g., dithiothreitol) did not subsequently bind to melanocytes; 4) another peptide hormone ligand (e.g., a substance-P analog) attached to the latex beads failed to bind to the cells; 5) B16/F10 mouse melanoma cells known to express melanocortin receptors bound to the microspheres; and 6) cells of nonmelanocyte origin (e.g., mammary cancer cells, small-cell lung cancer cells, fibroblasts) did not bind to the macromolecular conjugate. One exception was that human epidermal keratinocytes also expressed melanocortin receptors as determined by all the criteria established above for epidermal melanocytes. Thus, cell specific melanocortin receptors appear to be characteristic cell surface markers of epidermal melanocytes and keratinocytes.  相似文献   
74.
A subtractive-hybridization technique, combined with differential screenings and subsequent whole mount in situ hybridization (ISH) reactions, was used to isolate novel cDNA clones representing developmentally-regulated genes of carp. Small-scale differential screenings of an oocyte and a segmentation-stage cDNA library using oocyte-specific and segmentation stage-specific enriched probes, yielded 75 positive clones. ISH screening showed that 65% (15) of the oocyte-stage clones and 50% (26) of the segmentation-stage clones were indeed stage-specific. Partial sequence analysis suggests that approximately 65% of the 41 stage-specific clones represent novel genes. In addition, an Otxl clone was isolated. Two novel clones and the Otxl clone are of special interest for developmental studies. The clones represent genes that are locally expressed during embryonic development. The expression patterns of Otxl and one of the novel clones suggest functions in specification of the anterior-posterior axis. The three clones provide molecular markers for the study of gastrulation and the patterning of the a-p axis in teleosts.  相似文献   
75.
Talbot, N. J., Vincent, P., and Wildman, H. G. 1996. The influence of genotype and environment on the physiological and metabolic diversity ofFusarium compactum. Fungal Genetics and Biology20,254–267. Fungal species produce a large variety of secondary metabolites which are of considerable interest to the pharmaceutical industry. It is clear that the secondary metabolite production of a species varies significantly in strains from different geographic locations and from different habitats. The influence of genotype and environment on metabolite production is, however, poorly understood. In this study we examined the influence of genotypic variability, physiological variability, environmental location, and habitat on metabolite production byFusarium compactum.Isolates of the fungus from two geographic locations and two distinct habitat types were examined for growth on 95 different carbon sources, and genotypic variability was determined using RAPDs and rDNA–RFLP analysis. In a blind test secondary metabolite production was assessed using HPLC profiles of methanolic cell extracts. A number of correlations were observed between genotypic groupings, as determined using parsimony, and specific metabolite production. Similar correlations were also observed with physiological groups although genotypic analysis proved to be a more sensitive predictor of metabolite variability. The data suggest a complex relationship between environment, genotype, and metabolite production but highlight the use of genetic screening as a means of optimizing the chances of identifying a wide range of metabolites from a given species.  相似文献   
76.
The thermo-sensititve genic male-sterile (TGMS) gene in rice can alter fertility in response to temperature and is useful in the two-line system of hybrid rice production. However, little is known about the TGMS gene at the molecular level. The objective of this study was to identify molecular markers tightly linked with the TGMS gene and to map the gene onto a specific rice chromosome. Bulked segregant analysis of an F2 population from 5460s (a TGMS mutant line) x Hong Wan 52 was used to identify RAPD markers linked to the rice TGMS gene. Four hundred RAPD primers were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants; of these, 4 primers produced polymorphic products. Most of the polymorphic fragments contained repetitive sequences. Only one singlecopy sequence fragment was found, a 1.2-kb fragment amplified by primer OPB-19 and subsequently named TGMS1.2. TGMS1.2 was mapped on chromosome 8 with a RIL population and confirmed by remapping with a DHL population. Segregation analysis using TGMS1.2 as a probe indicated that TGMS1.2 both consegregated and was lined with the TGMS gene in this population. It is located about 6.7 cM from the TGMS gene. As TGMS1.2 is linked to the TGMS gene, the TGMS gene must be located on chromosome 8.This research was supported by the Rockefeller Foundation and China National High-Tech Research and Development Program. The first author is a Rockefeller Career Fellow at Texas Tech University  相似文献   
77.
A genetic map of potato (Solanum tuberosum L.) integrating molecular markers with morphological and isozyme markers was constructed using a backcross population of 67 diploid potato plants. A general method for map construction is described that differs from previous methods employed in potato and other outbreeding plants. First, separate maps for the female and male parents were constructed. The female map contained 132 markers, whereas the male map contained 138 markers. Second, on the basis of the markers in common the two integrated parental maps were combined into one with the computer programme JoinMap. This combined map consisted of 175 molecular markers, 10 morphological markers and 8 isozyme markers. Ninety-two of the molecular markers were derived from DNA sequences flanking either T-DNA inserts in potato or reintegrated maize transposable elements originating from these T-DNA constructs. Clusters of distorted segregation were found on chromosomes 1,2,8 and 11 for the male parent and chromosome 5 for both parents. The total length of the combined map is 1120 cM.  相似文献   
78.
Species-specific molecular markers were designed to assist in the identification of closely related black spruce (Picea mariana [B.S.P.] Mill.) and red spruce (P. rubens Sarg.) in northeastern North America. Trees from six provenances of black spruce and three provenances of red spruce were sampled from outside the sympatric zone. They were first classified using a composite index of five qualitative morphological traits. The species-specific genetic markers were developed using random amplified polymorphic DNAs (RAPD) and a combination of bulk sample and individual tree analyses. Each species bulk sample was constructed from DNAs obtained from 12 trees that were from outside the sympatric zone and showed a morphological composite index specific of each species. A total of 161 primers were screened with the bulk samples. From these, 52 primers showing segregating fingerprints were further screened with the individual trees. Most of the markers observed were shared by the two species, and there was less diversity in P. rubens. A small number of markers were found to be monomorphic or nearly monomorphic and specific to either P. mariana or P. rubens. These markers remained species-specific when F1 progenies derived from independent intraspecific crosses were screened, and they were subsequently found to co-segregate in hybrids derived from independent interspecific crosses here used as controls.  相似文献   
79.
The S incompatibility system of apple was confirmed through the application of the gene Got-1 for glutamate oxaloacetate transaminase as a marker for the S locus. The 11S alleles proposed by Kobel et al. (1939) were confirmed through anomalous segregations for Got-1 observed in 14 semi-compatible crosses and regular segregations observed in 2 fully compatible crosses. The S allele genotypes of Idared (S 3 S 7), Cox (S 5 S 9) and Fiesta (S 3 S 5) were determined and found to fall within the original series. By associating parental incompatibility genotypes with the segregation of Got-1 alleles, we were able to deduce the coupling of S and Got-1 alleles in 9 varieties.  相似文献   
80.
Randomly amplified polymorphic DNA (RAPD) markers were used for the identification of pigeonpea [Cajanus cajan (L.) Millsp.] cultivars and their related wild species. The use of single primers of arbitrary nucleotide sequence resulted in the selective amplification of DNA fragments that were unique to individual accessions. The level of polymorphism among the wild species was extremely high, while little polymorphism was detected within Cajanus cajan accessions. All of the cultivars and wild species under study could be easily distinguished with the help of different primers, thereby indicating the immense potential of RAPD in the genetic fingerprinting of pigeonpea. On the basis of our data the genetic relationship between pigeonpea cultivars and its wild species could be established.NCL Communication No. 6062  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号