首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   27篇
  国内免费   14篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   8篇
  2019年   9篇
  2018年   20篇
  2017年   8篇
  2016年   14篇
  2015年   20篇
  2014年   24篇
  2013年   37篇
  2012年   13篇
  2011年   15篇
  2010年   14篇
  2009年   24篇
  2008年   51篇
  2007年   36篇
  2006年   39篇
  2005年   41篇
  2004年   36篇
  2003年   23篇
  2002年   23篇
  2001年   25篇
  2000年   14篇
  1999年   20篇
  1998年   22篇
  1997年   25篇
  1996年   14篇
  1995年   23篇
  1994年   15篇
  1993年   25篇
  1992年   15篇
  1991年   10篇
  1990年   13篇
  1989年   6篇
  1988年   14篇
  1987年   11篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有794条查询结果,搜索用时 140 毫秒
21.
The role of the cumulus cells in initiating the resumption of meiosis after exposure to forskolin and dbcAMP was studied in the mouse. The resumption of meiosis was monitored by the percentage of germinal vesicle breakdown (GVBD) and polar body formation (PB). The cumulus-enclosed oocytes (CEO) and denuded oocytes (DO) were cultured with and without hypoxanthine (HX) in the culture medium. Three types of experiments were performed: (1) Effect of forskolin on spontaneous resumption of meiosis, i.e. cultures without HX, and two experiments in which HX is present throughout the culture: (2) Effect of transient exposure to forskolin or dibutyric-cyclic adenosinemonophosphate (dbcAMP) on GVBD prior to continued culture without forskolin or dbcAMP (oocyte priming). (3) Priming of CEO with forskolin for 2 hr, separation of cumulus cells and oocytes, followed by coculture of rejoined cumulus cells and oocytes, or coculture of the cumulus cells and new, unprimed DO. (1) Forskolin inhibited a spontaneous resumption of meiosis in a dose-dependent manner during the first 5 hr of culturing. After 22 hr all controls and CEO resumed meiosis, whereas only half of the DO did. (2) At least 1 hr of priming the CEO with forskolin is needed to induce GVBD and PB formation, but forskolin inhibited the resumption of meiosis when present for 24 hr. Similar results were obtained with a high concentration of dbcAMP. (3) A separation and rejoining of oocytes and cumulus cells after priming induced the resumption of meiosis in a significantly greater number of oocytes than in the control oocytes which were not primed. The GVBD of unstimulated DO also increased significantly when cocultured with cumulus cells from primed CEO. The percentage of GVBD in unprimed DO and in DO isolated from primed CEO was the same. We suggest that within 1–2 hr, forskolin and cAMP stimulate cumulus cells to produce a diffusible meiosis-inducing substance which overcomes HX-inhibition and induces oocyte maturation, including both GVBD and PB formation. The CEO must be primed for more than 2 hr before the resumption of meiosis in DO isolated from such CEO is induced. Oocyte-cumulus connections are crucial as far as initiating the production of a meiosis-inducing substance is concerned. Oocyte-cumulus connections are not needed for transferring this substance to the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   
22.
Summary Ovule perforation technique and media components (plant growth regulators andl-glutamine) were tested on in vitro growth of immature (<3 mm) embryos of “Springcrest” and “Earligrande” peaches. Ovule perforation was 2 to 4 times more effective in promoting embryo growth than leaving ovules intact.l-Glutamine (400 mg·liter−1) promoted an increase in growth but could not be used with indole-acetic acid plus kinetin because an antagonistic effect on embryo growth occurred. The use of these exogenous plant growth regulators did not increase embryo growth over in vivo growth.  相似文献   
23.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc.  相似文献   
24.
Ascophyllum nodosum (L.) Le Jol. was freed from bacteria and the endophytic fungus Mycosphaerella ascophylli Cotton by repeated treatment with chlorine solutions and grown in artificial seawater. Two types of axenic culture of different origin were obtained. Type 1 was developed from apices of A. nodosum collected in the sea. Type 2 was from plants which developed from adventitious embryos on rhizoids formed by type 1. This is the first time A. nodosum has been cultivated axenically. Growth of the axenic alga was increased by IAA, 21P and zeatin. Without external growth regulators some strains of the axenic alga deteriorated within a year; others developed a filamentous habit. Sulfur in a reduced state also stimulated growth. Addition of either glucose, mannose or mannitol to the medium caused the formation of calluslike layers of loosely packed colorless cells under the epidermis of the thalli and the epidermis was sloughed off. No increase in thallus length was noticed. Mycosphaerella ascophylli in axenic culture did not excude any substances stimulating growth of the alga, but that does not exclude an influence of the fungus on the alga in vivo. The fungus, when growing within the alga, seemed to have little influence on algal morphology. A bacterized but fungus-free A. nodosum was cultivated in an artificial seawater for 8 years. In the bacteria-free alga, the fungus protruded from the epidermis and evidently utilized the alga as a carbon source. The bacteria thus seem much more important than the fungus for normal growth of the Ascophyllum plant.  相似文献   
25.
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions.In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. Coli 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. Coli 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one a factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding.The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins.Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available. These studies should provide guides for extrapolation of results obtained with one response regulator to others as well as for the design of future structure/function analyses. Correspondence to: M.H. Saier, Jr.  相似文献   
26.
Oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide) and BAS 083 (l,l-dimethylpiperdinium chloride) reduced root-knot infection in tomato roots when respectively applied as a soil drench at 20 ppm and 10,000 ppm. Oryzalin reduced knot counts with various intervals between treatment and inoculation. BAS 083 reduced knot counts only when applied before inoculation. Oryzalin was shown not to be a contact nematicide, and BAS 083 was only a weak one. Neither compound reduced penetration by infective larvae. Postinfection reduction in knot counts by Oryzalin and BAS 083 resulted, in part, from activation of natural defense mechanisms of the host. Giant-cell development in cotton roots inoculated with nematodes was inhibited by Oryzalin. Lateral root development was inhibited by BAS 083.  相似文献   
27.
Summary The XylS protein is the positive regulator of the TOL plasmid-encoded meta-cleavage pathway for the metabolism of alkylbenzoates in Pseudomonas putida. This protein is activated by a variety of benzoate analogues. To elucidate the functional domains of the regulator and their interactions, several fusions of the XylS C-terminus to MS2 polymerase and of the N-terminus to -galactosidase were constructed but all are inactive. In addition, 15 double mutant xylS genes were constructed in vitro by fusing parts of various mutant genes to produce mutant regulators exhibiting C-terminal and N-terminal amino acid substitutions. The phenotypic properties of the parental single mutant genes, and those of the double mutant genes, suggest that the C-terminal region is involved in binding to DNA sequences at the promoter of the meta-cleavage pathway operon, and that the benzoate effector binding pocket includes critical residues present at both the N-terminal and C-terminal ends of the protein. The intraallelic dominance of the Ile229 (Ser229 Ile) and Val274 (Asp274 Val) substitutions over the N-terminal His4l (Arg4l His) substitution, and the intraallelic dominance of Thr45 (Arg45 Thr) over Ile229 and Val274, support the proposal that these two regions of the regulator interact functionally. Combination of the Leu88 (Trp88 Leu) and Arg256 (Pro256 Arg) substitutions did not suppress the semiconstitutive phenotype conferred by Leu88, but resulted in a protein with altered ability to recognize benzoates. In contrast, the Leu88 semiconstitutive phenotype was suppressed by Va1288 (Asp288 Val), and the double mutant was susceptible to activation by benzoates. The results suggest that intramolecular interactions between the C- and N-terminal regions of XylS are critical for activation of the regulator by the effector.  相似文献   
28.
Analysis of Dioscorea deltoidea tissue cultures grown in the presence of 2,4-D, indole-3-butyric acid, isopentenyladenine, benzyladenine and GA singly and in combination showed that the medium with 2,4-D most consistently favored diosgenin production. GA and high benzyladenine concentrations were toxic.  相似文献   
29.
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.  相似文献   
30.
Ceropegiaevansii McCann (family: Asclepiadaceae), a critically endangered plant of Western Ghats has acquired significant importance due to its medicinal implications, edible tubers, and ornamental flowers. This study deals with the optimization of axillary bud proliferation using nodal explants followed by genetic stability analysis of regenerants. Maximum number of shoots (11.6 ± 1.1) was observed on the Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (4.0 mg/l) and indole-3-acetic acid (0.3 mg/l) with 85% shoot multiplication frequency. In vitro-grown shoots were rooted best in 1/2 MS medium supplemented with indole-3-butyric acid (1.0 mg/l) with an average of 10.3 ± 0.9 roots per shoot and 92% rooting frequency. Plantlets were acclimatized best (90%) in a mixture of sterile soil, sand, and coco peat (1:2:1). Micropropagated plants were subjected to random amplified polymorphic DNA and inter simple sequence repeat markers analyses. Collectively, 759 bands were generated which were monomorphic and similar to the mother plant. Findings of this study are the first report on micropropagation and assessment of genetic stability of micropropagated plantlets in C. evansii which suggests that axillary shoot proliferation can safely be used as an effective tool for propagation and conservation of C. evansii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号