首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3319篇
  免费   315篇
  国内免费   107篇
  2024年   7篇
  2023年   65篇
  2022年   31篇
  2021年   78篇
  2020年   119篇
  2019年   130篇
  2018年   137篇
  2017年   130篇
  2016年   161篇
  2015年   131篇
  2014年   131篇
  2013年   269篇
  2012年   97篇
  2011年   122篇
  2010年   100篇
  2009年   184篇
  2008年   206篇
  2007年   204篇
  2006年   185篇
  2005年   173篇
  2004年   133篇
  2003年   110篇
  2002年   108篇
  2001年   96篇
  2000年   88篇
  1999年   69篇
  1998年   56篇
  1997年   46篇
  1996年   48篇
  1995年   32篇
  1994年   30篇
  1993年   38篇
  1992年   50篇
  1991年   21篇
  1990年   31篇
  1989年   18篇
  1988年   16篇
  1987年   17篇
  1986年   13篇
  1985年   9篇
  1984年   11篇
  1983年   12篇
  1982年   5篇
  1981年   4篇
  1980年   10篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1958年   1篇
排序方式: 共有3741条查询结果,搜索用时 15 毫秒
81.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   
82.
Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model‐data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95, particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.  相似文献   
83.
Operation Crayweed focuses on the restoration of underwater forests that disappeared from the coastline of Sydney, Australia’s largest city, 40 years previously. We show how a combination of science, hands‐on restoration, community engagement and art has helped the project to reach its goals as well as raise awareness about the importance of underwater kelp forests that are experiencing global decline.  相似文献   
84.
The early‐successional status of lichens in modern terrestrial ecosystems, together with the role lichen‐mediated weathering plays in the carbon cycle, have contributed to the long and widely held assumption that lichens occupied early terrestrial ecosystems prior to the evolution of vascular plants and drove global change during this time. Their poor preservation potential and the classification of ambiguous fossils as lichens or other fungal–algal associations have further reinforced this view. As unambiguous fossil data are lacking to demonstrate the presence of lichens prior to vascular plants, we utilize an alternate approach to assess their historic presence in early terrestrial ecosystems. Here, we analyze new time‐calibrated phylogenies of ascomycete fungi and chlorophytan algae, that intensively sample lineages with lichen symbionts. Age estimates for several interacting clades show broad congruence and demonstrate that fungal origins of lichenization postdate the earliest tracheophytes. Coupled with the absence of unambiguous fossil data, our work finds no support for lichens having mediated global change during the Neoproterozoic‐early Paleozoic prior to vascular plants. We conclude by discussing our findings in the context of Neoproterozoic‐Paleozoic terrestrial ecosystem evolution and the paleoecological context in which vascular plants evolved.  相似文献   
85.
In assessing the effectiveness of ecological restoration actions, outcomes evaluation using a multi‐taxa approach can greatly contribute to a clearer understanding of their success/failure. Since comprehensive biodiversity assessments are rarely possible, choosing taxa groups that are indicative of the ecosystem's structural and functional recovery is of major importance. Our goal was to evaluate the success of revegetation actions performed in a Mediterranean limestone quarry, using plants and epigean beetles as indicators. We compared their abundance, diversity, and community composition between revegetated sites aged 5, 13, and 19 years and a natural reference. Total plant cover significantly increased with restoration age and quickly reached reference values. However, native woody species cover dropped in the oldest site, while non‐native species became dominant. The abundance of beetles was always lower in restoration sites when compared to the reference, increasing with age, although not significantly. The richness of both plant species and beetle families was lower in restoration sites and did not show any trend towards the reference values. Finally, using nonmetric multidimensional scaling, the composition of plant and beetle communities from restoration sites showed a clear separation from the reference. Restoration efforts have successfully modified post‐quarry sites, but considerable differences remain, probably largely related to the use of the non‐native species Pinus halepensis in restoration plans. P. halepensis high cover in restoration sites greatly affects the structure of the ecosystem, and most likely its functioning too, as well as related ecosystem services, causing divergence from the reference values and compromising restoration success.  相似文献   
86.
As practitioners promote passive restoration as a complementary approach to technical reclamation, it is imperative to know its drivers. Although the consequences of endozoochory can be crucial to passive restoration success, few experimental studies assess the use of heavily disturbed sites by seed dispersers such as carnivores and how the seeds they bring in emerge and survive. Using an indoor sowing experiment conducted in a quarry located within a natural park in Portugal, we examined for the first time how carnivore endozoochorous seeds collected in the quarry potentially influence its passive restoration, through effects on plant emergence and survival. Also, we tested whether sowing date and water soaking, relevant factors when sowings are to be carried out, would affect seedling emergence and mortality rates when compared with the effect of endozoochory. Our target species were included in the revegetation plan of the quarry, of which endozoochorous seeds of Carob tree (Ceratonia siliqua) were collected in sufficient number for analysis. Irrespective of the carnivore species, endozoochorous carob seeds performed similarly to untreated seeds regarding emergence rates. Endozoochorous carob seedlings showed greater mortality rates but the net result for the plant can still be the colonization of recently vacant habitats by a large proportion of viable seeds. Concerning sowing date, the later carob seeds were sown over the fruit‐ripening season the faster seedlings emerged. Water soaking increased emergence rate by 6.5 times. Broadly, sowings with previous soaking and carnivore‐mediated seed dispersal of this dry‐fruited tree can jointly enhance quarry restoration.  相似文献   
87.
Estimates of regional and global freshwater N2O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here, we present four‐season data of N2O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry, and land use cover. Nitrate was the key driver for N2O dynamics, explaining as much as 78% of the variation of the seasonal mean N2O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples, 71% were oversaturated with N2O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2O measurements in annual emission estimates. Including winter data resulted in fourfold annual N2O emission estimates compared to summer only measurements. Nutrient‐rich calcareous and large humic lakes had the highest annual N2O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 and 29 Gg N2O‐N/year, respectively. The global warming potential of N2O from lakes cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.  相似文献   
88.
Climate change is redistributing marine and terrestrial species globally. Life‐history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence). To test which life‐history traits most mediate the process of range extension, we used a 16‐year dataset of 35 range‐extending coral‐reef fish species and quantified the importance of various traits on the arrival time (earliness) and degree of persistence (prevalence and patchiness) at higher latitudes. We show that traits predisposing species to shift their range more rapidly (large body size, broad latitudinal range, long dispersal duration) did not drive the early stages of redistribution. Instead, we found that as diet breadth increased, the initial arrival and establishment (prevalence and patchiness) of climate migrant species in temperate locations occurred earlier. While the initial incursion of range‐shifting species depends on traits associated with dispersal potential, subsequent establishment hinges more on a species’ ability to exploit novel food resources locally. These results highlight that generalist species that can best adapt to novel food sources might be most successful in a future ocean.  相似文献   
89.
90.
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号