首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2912篇
  免费   161篇
  国内免费   188篇
  2024年   7篇
  2023年   18篇
  2022年   33篇
  2021年   66篇
  2020年   57篇
  2019年   65篇
  2018年   40篇
  2017年   47篇
  2016年   88篇
  2015年   78篇
  2014年   81篇
  2013年   169篇
  2012年   93篇
  2011年   106篇
  2010年   82篇
  2009年   137篇
  2008年   167篇
  2007年   163篇
  2006年   157篇
  2005年   132篇
  2004年   143篇
  2003年   117篇
  2002年   91篇
  2001年   86篇
  2000年   83篇
  1999年   89篇
  1998年   66篇
  1997年   77篇
  1996年   75篇
  1995年   59篇
  1994年   66篇
  1993年   62篇
  1992年   65篇
  1991年   54篇
  1990年   58篇
  1989年   36篇
  1988年   26篇
  1987年   38篇
  1986年   40篇
  1985年   39篇
  1984年   26篇
  1983年   8篇
  1982年   13篇
  1981年   9篇
  1980年   11篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1972年   6篇
  1971年   3篇
排序方式: 共有3261条查询结果,搜索用时 31 毫秒
31.
This study was conducted to identify lines of subterranean clover (Trifolium spp.) with resistance to Meloidogyne arenaria (Neal, 1989) Chitwood, 1949, race 1; M. incognita (Kofoid and White, 1919) Chitwood, 1949, race 3; and M. javanica (Treub, 1885) Chitwood, 1949. A collection of 134 subterranean clover lines was evaluated and all had intermediate to high susceptibility. Root galling was negatively correlated with both seed and dry matter yields. Soil fumigation significantly reduced the nematode population in the field. Results indicate there is limited genetic resistance to root-knot nematodes among subterranean clover lines. Alternative sources of variation for this trait should be investigated.  相似文献   
32.
From among 125 strains of fluorescent and 52 strains of nonfluorescent bacteria initially screened in the laboratory for their antibiosis towards the bacterial wilt pathogen, Pseudomonas solanacearum, strain Pfcp of Pseudomonas fluorescens and strains B33 and B36 of Bacillus spp., were chosen and evaluated further in greenhouse and field tests. Pfcp treated banana (Musa balbisiana), eggplant and tomato plants were protected from wilt upto 50, 61 and 95% in greenhouse and upto 50, 49 and 36% respectively in field. Protection afforded by the Bacillus strains was lower. In bacteria-treated plants which were subsequently inoculated with P. solanacearum plant height and biomass values increased and were close to those of nontreated and noninoculated control plants.  相似文献   
33.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   
34.
Summary Understanding polymorphism at the enzyme level is basic to its use in population and genetic studies. However, no such information is available on the variability among different sainfoin (Onobrychis) species. Therefore, our objective was to study the existence of genetic polymorphism for esterase in 17 Onobrychis species and three cultivars of O. viciifolia Scop. Three regions of banding were observed in all the materials tested, with the number of bands varying from 0 to 3, 3 to 14, and 1 to 2 bands in each of these zones, which have been designated EST1, EST2, and EST3 respectively. All the materials studied had unique banding patterns, the only common feature being that all of them, except one species, had isozyme 1. Identification was possible only for four species (O. iberica, O. kachetica, O. transcaucasica, and O. bieberstenii) and one cultivar (Nova) based on the banding patterns. Large diversity was evident from the wide range of percent similarity values (0%–79%). Subsequent studies should be directed in using these isozyme banding patterns as markers to the desirable agronomic and quality traits of different germplasm lines.This work was supported by USDA Specific Cooperative Agreement No. 58-7MN1-8-143 from the Plant Stress and Water Conservation Unit, USDA-ARS, Lubbock, Texas. Joint contribution of the Texas Tech University, Lubbock, Texas and the USDA-ARS. TTU Journal no. T-4-302  相似文献   
35.
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light.  相似文献   
36.
37.
A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.  相似文献   
38.
Fine root demography in alfalfa (Medicago sativa L.)   总被引:1,自引:1,他引:0  
In perennial forages like alfalfa (Medicago sativa L.), repeated herbage removal may alter root production and mortality which, in turn, could affect deposition of fixed N in soil. Our objective was to determine the extent and patterns of fine-diameter root production and loss during the year of alfalfa stand establishment. The experiment was conducted on a loamy sand soil (Udorthentic Haploboroll) in Minnesota, USA, using horizontally installed minirhizotrons placed directly under the seeded rows at 10, 20, and 40 cm depths in four replicate blocks. We seeded four alfalfa germplasms that differed in N2 fixation capacity and root system architecture: Agate alfalfa, a winter hardy commercially-available cultivar; Ineffective Agate, which is a non-N2-fixing near isoline of Agate; a new germplasm that has few fibrous roots and strong tap-rooted traits; and a new germplasm that has many fibrous roots and a strongly branched root system architecture. Video images collected biweekly throughout the initial growing season were processed using C-MAP-ROOTS software.More than one-half of all fine roots in the upper 20 cm were produced during the first 7 weeks of growth. Root production was similar among germplasms, except that the highly fibrous, branch-rooted germplasm produced 29% more fine roots at 20 cm than other germplasms. In all germplasms, about 7% of the fine roots at each depth developed into secondarily thickened roots. By the end of the first growing season, greatest fine root mortality had occurred in the uppermost depth (48%), and least occurred at 40 cm (36%). Survival of contemporaneous root cohorts was not related to soil depth in a simple fashion, although all survivorship curves could be described using only five rates of exponential decline. There was a significant reduction in fine root mortality before the first herbage harvest, followed by a pronounced loss (average 22%) of fine roots at the 10- and 20-cm depths in the 2-week period following herbage removal. Median life spans of these early-season cohorts ranged from 58 to 131 days, based on fitted exponential equations. At all depths, fine roots produced in the 4 weeks before harvest (early- to mid-August) tended to have shorter median life spans than early-season cohorts. Similar patterns of fine root mortality did not occur at the second harvest. Germplasms differed in the pattern, but not the ultimate extent, of fine root mortality. Fine root turnover during the first year of alfalfa establishment in this experiment released an estimated 830 kg C ha–1 and 60 kg N ha–1, with no differences due to N2 fixation capacity or root system architecture.  相似文献   
39.
Nodulation of Alnus rubra seedlings after inoculation with soil from under A. rubra, Betula papyrifera. Rubus lacianutus, R. spectabilis, and R.ursinus on 2 recently harvested sites was compared. Nodulation capacity was low compared to other published reports, ranging from 0 to 18.9 infective units cm-3 of soil and was significantly affected by the site and plant species. Nodulation capacity of soil under alder was significantly higher than under all other species except R. spectabilis, regardless of site. The lowest nodulation capacity was found in soil under B. papyrifera.Joint appointment with Dept. of Soil Science, Faculty of Agricultural Sciences  相似文献   
40.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号