首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2625篇
  免费   145篇
  国内免费   58篇
  2023年   36篇
  2022年   20篇
  2021年   30篇
  2020年   50篇
  2019年   68篇
  2018年   52篇
  2017年   45篇
  2016年   50篇
  2015年   50篇
  2014年   106篇
  2013年   124篇
  2012年   76篇
  2011年   87篇
  2010年   69篇
  2009年   91篇
  2008年   96篇
  2007年   119篇
  2006年   88篇
  2005年   102篇
  2004年   99篇
  2003年   87篇
  2002年   71篇
  2001年   91篇
  2000年   83篇
  1999年   66篇
  1998年   52篇
  1997年   35篇
  1996年   37篇
  1995年   39篇
  1994年   50篇
  1993年   52篇
  1992年   32篇
  1991年   31篇
  1990年   29篇
  1989年   24篇
  1988年   36篇
  1987年   32篇
  1986年   24篇
  1985年   33篇
  1984年   43篇
  1983年   56篇
  1982年   64篇
  1981年   51篇
  1980年   43篇
  1979年   35篇
  1978年   33篇
  1977年   25篇
  1976年   30篇
  1974年   26篇
  1973年   20篇
排序方式: 共有2828条查询结果,搜索用时 15 毫秒
101.
102.
Two fundamental symbiosis‐based trophic types are recognized among Zoanthidea (Cnidaria, Anthozoa): fixed carbon is either obtained directly from zooxanthellae photosymbionts or from environmental sources through feeding with the assistance of host‐invertebrate behaviour and structure. Each trophic type is characteristic of the suborders of Zoanthidea and is associated with substantial distributional asymmetries: suborder Macrocnemina are symbionts of invertebrates and have global geographic and bathymetric distributions and suborder Brachycnemina are hosts of endosymbiotic zooxanthellae and are restricted to tropical photic zones. While exposure to solar radiation could explain the bathymetric asymmetry it does not explain the geographic asymmetry, nor is it clear why evolutionary transitions to the zooxanthellae‐free state have apparently occurred within Macrocnemina but not within Brachycnemina. To better understand the transitions between symbiosis‐based trophic types of Zoanthidea, a concatenated data set of nuclear and mitochondrial nucleotide sequences were used to test hypotheses of monophyly for groups defined by morphology and symbiosis, and to reconstruct the evolutionary transitions of morphological and symbiotic characters. The results indicate that the morphological characters that define Macrocnemina are plesiomorphic and the characters that define its subordinate taxa are homoplasious. Symbioses with invertebrates have ancient and recent transitions with a general pattern of stability in host associations through evolutionary time. The reduction in distribution of Zoanthidea is independent of the evolution of zooxanthellae symbiosis and consistent with hypotheses of the benefits of invertebrate symbioses, indicating that the ability to persist in most habitats may have been lost with the termination of symbioses with invertebrates.  相似文献   
103.
The most frequently and successfully used tree-ring parameters for the study of temperature variations are ring width and maximum latewood density (MXD). MXD is preferred over ring width due to a more prominent association with temperature. In this study we explore the dendroclimate potential of dendroanatomy based on the first truly well replicated dataset. Twenty-nine mature living Pinus sylvestris trees were sampled in North-eastern Finland at the cool and moist boreal forest zone, close to the latitudinal tree line, where ring width, X-ray MXD as well as the blue intensity counterpart MXBI were compared with dendroanatomical parameters. Maximum radial cell wall thickness as well as anatomical MXD and latewood density appeared to be the most promising parameters for temperature reconstruction. In fact, these parameters compare favorably to MXD derived from X-ray techniques as well as MXBI, in terms of shared variation and temperature correlations across frequencies and over time. The reasons for these results are thought to be the unprecedentedly high measurement resolution of the anatomical technique, which provide the optimal resolution – the cell – whereas X-ray techniques have a slightly lower resolution and BI techniques even lower. While the results of this study are encouraging, further tests on longer and multigenerational chronologies are required to more generally and fully assess the dendroclimate potential of anatomical parameters.  相似文献   
104.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   
105.
The field of landscape genetics has been rapidly evolving, adopting and adapting analytical frameworks to address research questions. Current studies are increasingly using regression‐based frameworks to infer the individual contributions of landscape and habitat variables on genetic differentiation. This paper outlines appropriate and inappropriate uses of multiple regression for these purposes, and demonstrates through simulation the limitations of different analytical frameworks for making correct inference. Of particular concern are recent studies seeking to explain genetic differences by fitting regression models with effective distance variables calculated independently on separate landscape resistance surfaces. When moving across the landscape, organisms cannot respond independently and uniquely to habitat and landscape features. Analyses seeking to understand how landscape features affect gene flow should model a single conductance or resistance surface as a parameterized function of relevant spatial covariates, and estimate the values of these parameters by linking a single set of resistance distances to observed genetic dissimilarity via a loss function. While this loss function may involve a regression‐like step, the associated nuisance parameters are not interpretable in terms of organismal movement and should not be conflated with what is actually of interest: the mapping between spatial covariates and conductance/resistance. The growth and evolution of landscape genetics as a field has been rapid and exciting. It is the goal of this paper to highlight past missteps and demonstrate limitations of current approaches to ensure that future use of regression models will appropriately consider the process being modeled, which will provide clarity to model interpretation.  相似文献   
106.
Birth‐and‐death processes are widely used to model the development of biological populations. Although they are relatively simple models, their parameters can be challenging to estimate, as the likelihood can become numerically unstable when data arise from the most common sampling schemes, such as annual population censuses. A further difficulty arises when the discrete observations are not equi‐spaced, for example, when census data are unavailable for some years. We present two approaches to estimating the birth, death, and growth rates of a discretely observed linear birth‐and‐death process: via an embedded Galton‐Watson process and by maximizing a saddlepoint approximation to the likelihood. We study asymptotic properties of the estimators, compare them on numerical examples, and apply the methodology to data on monitored populations.  相似文献   
107.
108.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   
109.
Abstract

The stereoselective oxidation of (—)-isolongifolanol (1) with a longifolene skeleton by Aspergillus niger (NBRC 4414) as a biocatalyst and suppressive effect on umuC gene expression by chemical mutagens furylfuramid and AFB1 of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Compound 1 was converted to a new terpenoid, (-)-(2S,8R)-8,12-dihydroxy-isolongifolanol (2). Its structure was determined by NMR, IR, specific rotation and mass spectrometry. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB1 in the umu test. Compound 1 suppressed 51% of the SOS-inducing activity against furylfuramid at < 1.0 mM. Compound 2 suppressed 15% and 24% of the SOS-inducing activity against furylfuramid and AFB1 at < 1.0 mM respectively.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号