排序方式: 共有217条查询结果,搜索用时 15 毫秒
21.
The pace of past climate change vs. potential bird distributions and land use in the United States 下载免费PDF全文
Brooke L. Bateman Anna M. Pidgeon Volker C. Radeloff Jeremy VanDerWal Wayne E. Thogmartin Stephen J. Vavrus Patricia J. Heglund 《Global Change Biology》2016,22(3):1130-1144
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr?1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr?1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing. 相似文献
22.
Priority threat management of invasive animals to protect biodiversity under climate change 下载免费PDF全文
Jennifer Firn Ramona Maggini Iadine Chadès Sam Nicol Belinda Walters Andy Reeson Tara G. Martin Hugh P. Possingham Jean‐Baptiste Pichancourt Rocio Ponce‐Reyes Josie Carwardine 《Global Change Biology》2015,21(11):3917-3930
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one‐sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost‐effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost‐effectiveness was relatively unaffected by including climate change into decision‐making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected. 相似文献
23.
Paul D. Pratt Michael J. Pitcairn Scott Oneto M. Brent Kelley Clayton J. Sodergren Frédéric Beaulieu 《Biocontrol Science and Technology》2019,29(5):494-513
Scotch broom (Cytisus scoparius (L.) Link) is a European shrub that has naturalised in several countries worldwide and is recognised as an invasive weed in much of western North America. The mite Aceria genistae (Nalepa) is a coevolved, gall-inducing herbivore associated with Scotch broom in its native range and has been intentionally introduced as a classical weed biological control agent of C. scoparius in Australia and New Zealand. An adventive, never intentionally introduced, population of A. genistae was discovered in Washington and Oregon, U.S.A. in 2005. Surveys for A. genistae in California resulted in the discovery of the gall mite in 11 counties, with a widely scattered distribution. Molecular and morphological assessments confirm the mites collected from galls in California are A. genistae. Whether natural or anthropogenic, the estimated rate of long range dispersal for A. genistae from Washington or Oregon to California ranges from 39 to 62?km/yr. Niche model predictions indicate that A. genistae will continue to expand its distribution throughout much of the Scotch broom-invaded lands of California but areas supporting the weed in the Eastern U.S.A. appear less suitable. Modelling evidence also indicates that portions of Chile and Argentina are suitable for colonisation by A. genistae, also suggesting that expansion of the mite is possible in areas of Tasmania, southeastern Australia, and New Zealand where the mite was released. The environmental safety of A. genistae in relation to non-target plants and the influence of herbivory on Scotch broom fitness are discussed. 相似文献
24.
Species distribution models (SDMs) assume equilibrium between species' distribution and the environment. However, this assumption can be violated under restricted dispersal and spatially autocorrelated environmental conditions. Here we used a model to simulate species' ranges expansion under two non-equilibrium scenarios, evaluating the performance of SDM coupled with spatial eigenvector mapping. The highest fit is for the models that include space, although the relative importance of spatial variables during the range expansion differs in the two scenarios. Incorporating space to the models was important only under colonization-lag non-equilibrium, under the expected scenario. Thus, mechanisms that generate range cohesion and determine species' distribution under climate changes can be captured by spatial modelling, with advantages compared with other techniques and in line with recent claims that SDMs have to account for more complex dynamic scenarios. 相似文献
25.
藏羚羊作为羌塘高原草食性野生动物的典型代表,明确其栖息地的准确分布将有利于识别藏羚羊种群保护关键区域,协调羌塘高原人与野生动物冲突。采用野外调查与物种分布模型相结合的办法,以藏羚羊栖息地选择偏好和迁徙规律为基础,利用Maxent模型模拟其在繁殖季节和非繁殖季节的栖息地分布,并通过栖息地质量模型辅以GIS空间分析方法,识别受人类干扰的栖息地范围。结果表明:藏羚羊在非繁殖季节主要分布在羌塘高原东南部,围绕在色林错等水系周围,其越冬区面积约为26万km2。倾向选择海拔4800m以上、气候温暖、靠近水源且食物资源丰富的区域。藏羚羊在繁殖季节栖息地明显呈现由南向北扩散的趋势,多在水系周围呈小片状分布于羌塘东北、中北、昆仑山南麓部分区域,产羔区面积约为30万km2。选择产羔地时则注重坡度、水源、海拔、气温日较差等,对植被资源的选择倾向较非繁殖季弱,重视迁徙通道连贯性和产羔区域安全性。羌塘高原人类活动整体较弱,北部羌塘国家级自然保护区是藏羚羊理想栖息地,但南部地区社会经济较发达,尤其是那曲地区南部和阿里西南部,居民地、道路和牧业等人类活动对栖息地干扰较大,受干扰面积分别占藏羚羊越冬区的39.7%,产羔区的34.9%。 相似文献
26.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。 相似文献
27.
《Fungal Ecology》2015
The ability to identify the spatial distribution of economically important fungal species is crucial for understanding the environmental factors that affect them and for conservation management. A potentially valuable approach for this is maximum entropy (Maxent) spatial distribution modeling, which was applied here to map the potential distribution of three “Sanghuang” mushrooms in China, which include Phellinus baumii, Phellinus igniarius and Phellinus vaninii. Nineteen WorldClim bioclimatic variables, with corresponding altitude data, and 89 spatially well-dispersed species occurrence records were used in the modeling. The relative importance of the environmental variables was evaluated by Jackknife tests in the modeling analysis. The maximum entropy models obtained have high Area Under Receiver Operating Characteristic Curve (AUC) values: 0.956, 0.967 and 0.960, for P. baumii, P. igniarius and P. vaninii, respectively. The bioclimatic variable that most strongly affected distributions of P. baumii and P. vaninii was precipitation in the warmest quarter, while the mean temperature in the warmest quarter affected the distribution of P. igniarius most strongly. Overall, these models could provide valuable help in searching for the target species in areas where it is hitherto unknown, and be the reference of conservation measures for these medicinal fungal species. 相似文献
28.
The north and south Moluccas (Indonesia) have very different geotectonic origins and, due to that, a difference in flora is to be expected. The north Moluccas moved westwards along the north coast of New Guinea to their present position, the south Moluccas moved north from Australia. On the other hand, a comparable climate in both areas and (partial) submergence during tectonic movement may have equalized both floras. Collection data from Naturalis Biodiversity Center on 1559 species in 121 families treated in Flora Malesiana were collected for the Moluccas, Sulawesi, and Western New Guinea (latitudes 9.2°S and 5.6°N and longitudes 118.8°E and 141°E) and georeferenced. Species Distribution Models (SDMs) were made, based on least correlated climate and edaphic variables, using only those species that were present in 5 or more grid cells of 5-arc minutes and models were tested for deviation from random. Both areas differ significantly and share only 50%-65% of their species. The 348 significant SDMs differ much less, though still significantly, sharing 91% of the species. Despite strong climatic and edaphic similarities between the North and South Moluccas, they differ greatly in species composition, which is in support of geotectonic reconstructions. The differences between the North and South Moluccas suggest that the continuous dispersal barriers and tectonic backgrounds have influenced their current flora. 相似文献
29.
Natalia B. ANANJEVA ;Evgeny A. GOLYNSKY ;Seyyed Saeed HOSSEINIANYOUSEFKHANI ;and Rafaqat MASROOR 《亚洲两栖爬行动物研究(英文版)》2014,(3):161-167
Predictive potential distribution modeling is of increasing importance in modern herpetological studies and determination of environmental and conservation priorities. In this article we provided results of analysis and forecasts of the potential distribution of smallscaled rock agama Paralaudakia microlepis (Blanford, 1874) using the distribution models through Maxent (www.cs.princeton.edu/- schapire / maxent). We made an attempt for comparison of input of bioclimatic factors and characteristics of biotope distribution for three species of genus Paralaudalda. Constructed model identified dissemination of Paralaudakia microlepis enough performance (AUC = 0.972 with dispersion 0.003). According to the map constructed, the most suitable habitats of smallscaled rock agama Paralaudakia microlepis are located in southern and eastern Iran, the west of central Pakistan and southeastern Afghanistan. 相似文献
30.
Seyyed Saeed HOSSEINIAN YOUSEFKHANI Gentile Francesco FICETOLA Nasrullah RASTEGAR-POUYANI Natalia B ANANJEVA Eskandar RASTEGAR-POUYANI Rafaqat MASROOR 《亚洲两栖爬行动物研究(英文版)》2013,(3):207-213
Predictive potential distribution modeling is crucial in outlining habitat usage and establishing conservation management priorities. In this paper we provide detailed data on the distribution of the Caucasian rock agama Para- laudakia caucasia, and use species distribution models (MAXENT) to evaluate environmental suitability and potential distribution at a broad spatial scale. Locality data on the distribution of P. caucasia have been gathered over nearly its entire range by various authors from field surveys. The distribution model ofP caucasia showed good performance (AUC = 0.887), and predicted high suitability in regions mainly located in Tajikistan, north Pakistan, Afghanistan, southeast Turkmenistan, northeast Iran along the Elburz mountains, Transcaueasus (Azerbajan, Armenia, Georgia), northeastern Turkey and northward along the Caspian Sea coast in Daghestan, Russia. The identification of suitable areas for this species will help to assess conservation status of the species, and to set up management programs. 相似文献