首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9495篇
  免费   572篇
  国内免费   311篇
  2023年   149篇
  2022年   256篇
  2021年   266篇
  2020年   255篇
  2019年   351篇
  2018年   341篇
  2017年   248篇
  2016年   239篇
  2015年   315篇
  2014年   591篇
  2013年   736篇
  2012年   514篇
  2011年   664篇
  2010年   504篇
  2009年   435篇
  2008年   453篇
  2007年   462篇
  2006年   422篇
  2005年   397篇
  2004年   371篇
  2003年   290篇
  2002年   247篇
  2001年   153篇
  2000年   116篇
  1999年   117篇
  1998年   110篇
  1997年   99篇
  1996年   101篇
  1995年   77篇
  1994年   70篇
  1993年   67篇
  1992年   58篇
  1991年   62篇
  1990年   49篇
  1989年   46篇
  1988年   31篇
  1987年   27篇
  1985年   56篇
  1984年   87篇
  1983年   56篇
  1982年   88篇
  1981年   69篇
  1980年   48篇
  1979年   49篇
  1978年   41篇
  1977年   39篇
  1976年   32篇
  1975年   30篇
  1974年   22篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Natural populations often show genetic variation in pathogen resistance, which is paradoxal because natural selection is expected to erode genetic variation in fitness‐related traits. Several different factors have been suggested to maintain such variation, but their relative importance is still poorly understood. Here we examined if environmental heterogeneity and genetic trade‐offs could contribute to the maintenance of genetic variation in immune function of a freshwater snail Lymnaea stagnalis. We assessed the immunocompetence of snails originating from different families and maintained in different feeding treatments (ad libitum feeding, no food) by measuring the density of circulating hemocytes, phenoloxidase activity, and antibacterial activity of snail hemolymph. Food limitation reduced snail immune function, and we found significant among‐family variation in hemocyte concentration and PO activity, but not in antibacterial activity. Interestingly, food availability modified the family‐level variation observed in PO activity so that the relative immunocompetence of different snail families changed over environmental conditions (G × E interaction). We found no evidence for genetic trade‐offs between snail growth and immune defense nor among immune traits. Thus, our findings support the idea that environmental heterogeneity may promote maintenance of genetic variation in immune defense, but also suggest that different immune traits might not respond similarly to environmental variation.  相似文献   
992.
Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1α dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.  相似文献   
993.
994.
We found that overexpression of tail interacting protein of 47 kDa (TIP47), but not its truncated form (t-TIP47) protected NIH3T3 cells from hydrogen-peroxide-induced cell death, prevented the hydrogen-peroxide-induced mitochondrial depolarization determined by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide (JC1), while suppression of TIP47 in HeLa cells facilitated oxidative-stress-induced cell death. TIP47 was located to the cytoplasm of untreated cells, but some was associated to mitochondria in oxidative stress. Recombinant TIP47, but not t-TIP47 increased the mitochondrial membrane potential (Δψ), and partially prevented Ca2+ induced depolarization. It is assumed that TIP47 can bind to mitochondria in oxidative stress, and inhibit mitochondria mediated cell death by protecting mitochondrial membrane integrity.  相似文献   
995.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   
996.
CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan.  相似文献   
997.
998.
Cationic antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms against invading microorganisms. Here we demonstrate that OprI (outer membrane protein I) of Pseudomonas aeruginosa is responsible for its susceptibility to human ribonuclease 7 (hRNase 7) and α-helical cationic AMPs, instead of surface lipopolysaccharide, which is the initial binding site of cationic AMPs. The antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa were inhibited by the addition of exogenous OprI or anti-OprI antibody. On modification and internalization of OprI by hRNase 7 into cytosol, the bacterial membrane became permeable to metabolites. The lipoprotein was predicted to consist of an extended loop at the N terminus for hRNase 7/lipopolysaccharide binding, a trimeric α-helix, and a lysine residue at the C terminus for cell wall anchoring. Our findings highlight a novel mechanism of antimicrobial activity and document a previously unexplored target of α-helical cationic AMPs, which may be used for screening drugs to treat antibiotic-resistant bacterial infection.  相似文献   
999.
The Neuromutagenesis Facility at the Jackson Laboratory generated a mouse model of retinal vasculopathy, nmf223, which is characterized clinically by vitreal fibroplasia and vessel tortuosity. nmf223 homozygotes also have reduced electroretinogram responses, which are coupled histologically with a thinning of the inner nuclear layer. The nmf223 locus was mapped to chromosome 17, and a missense mutation was identified in Lama1 that leads to the substitution of cysteine for a tyrosine at amino acid 265 of laminin α1, a basement membrane protein. Despite normal localization of laminin α1 and other components of the inner limiting membrane, a reduced integrity of this structure was suggested by ectopic cells and blood vessels within the vitreous. Immunohistochemical characterization of nmf223 homozygous retinas demonstrated the abnormal migration of retinal astrocytes into the vitreous along with the persistence of hyaloid vasculature. The Y265C mutation significantly reduced laminin N-terminal domain (LN) interactions in a bacterial two-hybrid system. Therefore, this mutation could affect interactions between laminin α1 and other laminin chains. To expand upon these findings, a Lama1 null mutant, Lama1tm1.1Olf, was generated that exhibits a similar but more severe retinal phenotype than that seen in nmf223 homozygotes. The increased severity of the Lama1 null mutant phenotype is probably due to the complete loss of the inner limiting membrane in these mice. This first report of viable Lama1 mouse mutants emphasizes the importance of this gene in retinal development. The data presented herein suggest that hypomorphic mutations in human LAMA1 could lead to retinal disease.  相似文献   
1000.
CCR4-NOT complex 7 (Cnot7) was identified as a regulator of gene expression in yeast and evolutionally conserved in mammals. Cnot7 deficient male mice exhibit abnormality in spermatogenesis. As these mice contained construct to express LacZ, we followed the expression patterning in these animals. LacZ was expressed in osteoblasts located in the primary spongiosa in adult mice. Cellular analysis indicated that LacZ is expressed in osteoblasts but not in osteoclasts. In the mineralized nodules formed in the culture of bone marrow cells obtained from Cnot7 +/- mice, LacZ expression was mainly observed in the cells forming mineralized nodules but not in un-mineralized area scattered around the periphery of the nodules. LacZ blue positive cells were gradually depositing minerals along its time course of the in vitro mineralization assay. Cnot7 expression was enhanced by the treatment with BMP. These data suggest that Cnot7 is expressed in osteoblasts and is associated with mineralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号