全文获取类型
收费全文 | 8374篇 |
免费 | 471篇 |
国内免费 | 233篇 |
专业分类
9078篇 |
出版年
2024年 | 6篇 |
2023年 | 156篇 |
2022年 | 244篇 |
2021年 | 178篇 |
2020年 | 227篇 |
2019年 | 325篇 |
2018年 | 355篇 |
2017年 | 231篇 |
2016年 | 220篇 |
2015年 | 316篇 |
2014年 | 454篇 |
2013年 | 727篇 |
2012年 | 408篇 |
2011年 | 576篇 |
2010年 | 512篇 |
2009年 | 446篇 |
2008年 | 461篇 |
2007年 | 473篇 |
2006年 | 454篇 |
2005年 | 480篇 |
2004年 | 336篇 |
2003年 | 209篇 |
2002年 | 201篇 |
2001年 | 94篇 |
2000年 | 87篇 |
1999年 | 75篇 |
1998年 | 74篇 |
1997年 | 80篇 |
1996年 | 51篇 |
1995年 | 58篇 |
1994年 | 65篇 |
1993年 | 44篇 |
1992年 | 34篇 |
1991年 | 20篇 |
1990年 | 24篇 |
1989年 | 25篇 |
1988年 | 22篇 |
1987年 | 26篇 |
1986年 | 12篇 |
1985年 | 27篇 |
1984年 | 59篇 |
1983年 | 49篇 |
1982年 | 39篇 |
1981年 | 26篇 |
1980年 | 22篇 |
1979年 | 14篇 |
1978年 | 15篇 |
1976年 | 12篇 |
1975年 | 7篇 |
1974年 | 12篇 |
排序方式: 共有9078条查询结果,搜索用时 7 毫秒
51.
Mazon H Marcillat O Forest E Vial C 《Protein science : a publication of the Protein Society》2004,13(2):476-486
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism. 相似文献
52.
Yasuhiro Teranishi Ji‐Yeun Hur Hedvig Welander Jenny Frånberg Mikio Aoki Bengt Winblad Susanne Frykman Lars O. Tjernberg 《Journal of cellular and molecular medicine》2010,14(11):2675-2686
γ‐Secretase is a transmembrane protease complex responsible for the processing of a multitude of type 1 transmembrane proteins, including amyloid precursor protein (APP) and Notch. A functional complex is dependent on the assembly of four proteins: presenilin (PS), nicastrin, Aph‐1 and Pen‐2. Little is known about how the substrates are selected by γ‐secretase, but it has been suggested that γ‐secretase associated proteins (GSAPs) could be of importance. For instance, it was recently reported from studies in cell lines that TMP21, a transmembrane protein involved in trafficking, binds to γ‐secretase and regulates the processing of APP‐derived substrates without affecting Notch cleavage. Here, we present an efficient and selective method for purification and analysis of γ‐secretase and GSAPs. Microsomal membranes were prepared from rat or human brain and incubated with a γ‐secretase inhibitor coupled to biotin via a long linker and a S‐S bridge. After pulldown using streptavidin beads, bound proteins were eluted under reducing conditions and digested by trypsin. The tryptic peptides were subjected to LC‐MS/MS analysis, and proteins were identified by sequence data from MS/MS spectra. All of the known γ‐secretase components were identified. Interestingly, TMP21 and the PS associated protein syntaxin1 were associated to γ‐secretase in rat brain. We suggest that the present method can be used for further studies on the composition of the γ‐secretase complex. 相似文献
53.
Analysis of biochemicals in single cells is important for understanding cell metabolism, cell cycle, adaptation, disease states, etc. Even the same cell types exhibit heterogeneous biochemical makeup depending on their physiological conditions and interactions with the environment. Conventional methods of mass spectrometry (MS) used for the analysis of biomolecules in single cells rely on extensive sample preparation. Removing the cells from their natural environment and extensive sample processing could lead to changes in the cellular composition. Ambient ionization methods enable the analysis of samples in their native environment and without extensive sample preparation.1 The techniques based on the mid infrared (mid-IR) laser ablation of biological materials at 2.94 μm wavelength utilize the sudden excitation of water that results in phase explosion.2 Ambient ionization techniques based on mid-IR laser radiation, such as laser ablation electrospray ionization (LAESI) and atmospheric pressure infrared matrix-assisted laser desorption ionization (AP IR-MALDI), have successfully demonstrated the ability to directly analyze water-rich tissues and biofluids at atmospheric pressure.3-11 In LAESI the mid-IR laser ablation plume that mostly consists of neutral particulate matter from the sample coalesces with highly charged electrospray droplets to produce ions. Recently, mid-IR ablation of single cells was performed by delivering the mid-IR radiation through an etched fiber. The plume generated from this ablation was postionized by an electrospray enabling the analysis of diverse metabolites in single cells by LAESI-MS.12 This article describes the detailed protocol for single cell analysis using LAESI-MS. The presented video demonstrates the analysis of a single epidermal cell from the skin of an Allium cepa bulb. The schematic of the system is shown in Figure 1. A representative example of single cell ablation and a LAESI mass spectrum from the cell are provided in Figure 2. 相似文献
54.
Linsheng Liu Jiye Aa Guangji Wang Bei Yan Xinwen Wang Bei Cao Mengjie Li Yuanting Zheng Fang Zhou Zimei Wu 《Analytical biochemistry》2010,406(2):105-6697
In metabolomic research, blood plasma and serum have been considered to possess similar compositions and properties. Their perceived equivalence has resulted in researchers choosing arbitrarily between serum and plasma for analysis. Here, routine serum and plasma were prepared and their low-molecular-weight compounds were determined using gas chromatography/time-of-flight mass spectrometry. Principal components analysis was applied to process the acquired data, and marked differences in metabolite profiles were observed between serum and plasma. Of the 72 identified compounds, 36 (50%) discriminate serum from plasma, with 29 and 7 metabolites showing a significantly higher abundance (t test, P < 0.05) in serum and plasma, respectively. Incubation of blood had distinct effects on the analyte peak areas, with the effects being more pronounced for plasma than for serum and more pronounced for a shorter incubation than for a longer incubation. These results highlight the importance in choosing serum or plasma as the analytical sample and in stipulating the incubation time. Because incubation affected the analyte peak areas less in serum than in plasma, we recommend serum as the sample of choice in metabolomic studies. 相似文献
55.
Meiyao Wang Martin Misakian Hua-Jun He Peter Bajcsy Fatima Abbasi Jeffrey M Davis Kenneth D Cole Illarion V Turko Lili Wang 《Clinical proteomics》2014,11(1)
Background
In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.Method
Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.Results
The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.Conclusion
Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.Electronic supplementary material
The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users. 相似文献56.
Lyso-glycosphingolipids (lyso-GSLs), the N-deacylated forms of glycosphingolipids (GSLs), are important synthetic intermediates for the preparation of GSL analogs. Although lyso-GSLs can be produced by hydrolyzing natural GSLs using sphingolipid ceramide N-deacylase (SCDase), the yield for this reaction is usually low because SCDase also catalyzes the reverse reaction, ultimately establishing an equilibrium between hydrolysis and synthesis. In the present study, we developed an efficient method for controlling the reaction equilibrium by introducing divalent metal cation and detergent in the enzymatic reaction system. In the presence of both Ca2+ and taurodeoxycholate hydrate, the generated fatty acids were precipitated by the formation of insoluble stearate salts and pushing the reaction equilibrium toward hydrolysis. The yield of GM1 hydrolysis can be achieved as high as 96%, with an improvement up to 45% compared with the nonoptimized condition. In preparative scale, 75 mg of lyso-GM1 was obtained from 100 mg of GM1 with a 90% yield, which is the highest reported yield to date. The method can also be used for the efficient hydrolysis of a variety of GSLs and sphingomyelin. Thus, this method should serve as a facile, easily scalable, and general tool for lyso-GSL production to facilitate further GSL research. 相似文献
57.
Corina Krause Jochen Kirschbaum Günther Jung Hans Brückner 《Journal of peptide science》2006,12(5):321-327
From the culture broth of the mold Trichoderma viride, strain 63 C-I, the polypeptide antibiotic suzukacillin (SZ) was isolated. A peptide mixture named SZ-A was obtained by crystallization from crude SZ. Individual peptides from SZ-A were isolated by semipreparative HPLC and sequences were determined by HPLC-ESI-MS. The data confirm a general sequence of SZ-A published previously and in addition establish the individual sequences of 15 acetylated eicosa peptides with C-terminal alcohols. The major peptide SZ-A4 (21% of all peptides) shows the sequence:Ac-Aib-Ala-Aib-Ala-Aib-Ala(6)-Gln-Aib-Lx(9)-Aib-Gly-Aib(12)-Aib-Pro-Vx(15)-Aib-Vx(17)-Gln-Gln-Fol. Amino acid exchanges of the peptaibol are located in position 6 (Ala/Aib), 9 (Vx/Lx), 12 (Aib/Lx), 17 (Aib/Vx) and possibly at position15 (Val/Iva) (uncommon abbreviations: Aib (alpha-aminoisobutyric acid); Iva (D-isovaline); Lx (L-leucine or L-isoleucine); Vx (L-valine or D-isovaline); Fol (L-phenylalaninol)). 相似文献
58.
Sara Rosati Ewald TJ van den Bremer Janine Schuurman Paul WHI Parren Johannis P Kamerling Albert JR Heck 《MABS-AUSTIN》2013,5(6):917-924
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies 相似文献
59.
Seema Sharma Haiyan Zheng Yuanpeng J. Huang Asli Ertekin Yoshitomo Hamuro Paolo Rossi Roberto Tejero Thomas B. Acton Rong Xiao Mei Jiang Li Zhao Li‐Chung Ma G. V. T. Swapna James M. Aramini Gaetano T. Montelione 《Proteins》2009,76(4):882-894
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three‐dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N‐ and C‐terminal tails were evaluated using 1H‐15N HSQC and 1H‐15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS‐based truncated construct for a 77‐residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
60.
Phosphorylation has been the most studied of all the posttranslational modifications of proteins. Mass spectrometry has emerged as a powerful tool for phosphomapping on proteins/peptides. Collision-induced dissociation (CID) of phosphopeptides leads to the loss of phosphoric or metaphosphoric acid as a neutral molecule, giving an intense neutral loss product ion in the mass spectrum. Dissociation of the neutral loss product ion identifies peptide sequence. This method of data-dependent constant neutral loss (DDNL) scanning analysis has been commonly used for mapping phosphopeptides. However, preferential losses of groups other than phosphate are frequently observed during CID of phosphopeptides. Ions that result from such losses are not identified during DDNL analysis due to predetermined scanning for phosphate loss. In this study, we describe an alternative approach for improved identification of phosphopeptides by sequential abundant ion fragmentation analysis (SAIFA). In this approach, there is no predetermined neutral loss molecule, thereby undergoing sequential fragmentation of abundant peak, irrespective of the moiety lost during CID. In addition to improved phosphomapping, the method increases the sequence coverage of the proteins identified, thereby increasing the confidence of protein identification. To the best of our knowledge, this is the first report to use SAIFA for phosphopeptide identification. 相似文献