首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2392篇
  免费   66篇
  国内免费   161篇
  2023年   19篇
  2022年   24篇
  2021年   37篇
  2020年   49篇
  2019年   49篇
  2018年   57篇
  2017年   64篇
  2016年   91篇
  2015年   64篇
  2014年   100篇
  2013年   155篇
  2012年   72篇
  2011年   87篇
  2010年   77篇
  2009年   162篇
  2008年   146篇
  2007年   153篇
  2006年   116篇
  2005年   123篇
  2004年   103篇
  2003年   83篇
  2002年   62篇
  2001年   38篇
  2000年   50篇
  1999年   70篇
  1998年   48篇
  1997年   21篇
  1996年   38篇
  1995年   35篇
  1994年   30篇
  1993年   25篇
  1992年   34篇
  1991年   22篇
  1990年   25篇
  1989年   17篇
  1988年   8篇
  1987年   14篇
  1986年   23篇
  1985年   28篇
  1984年   24篇
  1983年   17篇
  1982年   22篇
  1981年   29篇
  1980年   17篇
  1979年   23篇
  1978年   13篇
  1977年   14篇
  1976年   6篇
  1975年   9篇
  1973年   11篇
排序方式: 共有2619条查询结果,搜索用时 15 毫秒
31.
The root-lesion nematodes are important pests attacking stone and pome fruit crops throughout the world. They play an important role in the development of orchard replant problems. Host resistance toPratylenchus vulnus, the nematode of concern in mediterranean environments, has been difficult to find, and even more, to transmit into commercial rootstocks. Alternative management measures using early mycorrhizal infection that would confer protection against the nematode at a stage when plants are most vulnerable are currently being explored. These measures are considered important, taking into account a widespread change towards production systems that use in vitro material propagated in treated substrates free of mycorrhizal and other beneficial microorganisms. The prophylactic effect against root-lesion nematodes would be linked to mycorrhizal dependency of the host plant. Increase in tolerance would seem to be related to mycorrhiza assisted nutrition rather than to a direct suppressive effect of AM over the root-lesion nematode. InCitrus, Prunus, Malus andCydonia rootstocks, the nematode has shown to have a negative effect over AM colonization in the root.  相似文献   
32.
Abstract Horizontal gene transfer among microbial populations has been assumed to occur in the environment, yet direct observations of this phenomenon are rare or limited to observations where the mechanism(s) could not be explicitly determined. Here we demonstrate the transfer of exogenous plasmid DNA to members of indigenous marine bacterial populations by natural transformation, the first report of this process for any natural microbial community. Ten percent of marine bacterial isolates examined were transformed by plasmid DNA while 14% were transformed by chromosomal DNA. Transformation of mixed marine microbial assemblages was observed in 5 of 14 experiments. In every case, acquisition of the plasmid by members of the indigenous flora was accompanied by modification (probably from genetic rearrangement or methylation) that altered its restriction enzyme digestion pattern. Estimation of transformation rates in estuarine environments based upon the distribution of competency and transformation frequencies in isolates and mixed populations ranged from 5 × 10−4 to 1.5 transformants/1 day. Extrapolation of these rates to ecosystem scales suggests that natural transformation may be an important mechanism for plasmid transfer among marine bacterial communities.  相似文献   
33.
Erythrocytes from the marine fish species ballan wrasse (Labrus berggylta Ascanius), bullhead (Myoxocephalus scorpius L.), cod (Gadus morhua L.), dab (Limanda limanda L.), eelpout (Zoarces viviparus L.), flounder (Platichthys flesus L.), lumpfish (Cyclopterus lumpus L.), plaice (Pleuronectes platessa L.), sole (Solea solea L.) and turbot (Scophthalmus maxima L.) possess the capacity for regulatory volume decrease. This property was demonstrated in vitro by reduction of the osmolality of the incubation medium from 330 to 255 mosmol·kg-1. During the 4-h incubation period only the lumpfish cells completely regained the original volume. Twenty-seven free amino compounds were present in detectable amounts in the erythrocytes. At normal osmolality the taurine content was between 14.0 mol·g dry weight-1 (lumpfish) and 147.4 mol·g dry weight-1 (sole). Except in the bullhead, taurine was the quantitatively dominating amino compound in the erythrocytes from all species, and accounted for betwee 23% (lumpfish) and 88% (sole) of the total content of free amino compounds. In each species the regulatory volume decrease was associated with a reduction in the cellular content of taurine. Taurine contributed to between 6% (lumpfish) and 36% (flounder) of the cell shrinkage. There was a significant negative correlation, however, between the cellular concentration of taurine at normal osmolality and the capacity of the cells for regulatory volume decrease. Gamma-aminobutyric acid and/or glycine also contributed to the process of volume regulation, but to a lesser extent than taurine. The volume regulatory efflux of taurine and -aminobutyric acid were mediated by taurine channels. It is suggested that these channels also mediated the reduction in the cellular contents of glycine.Abbreviations cmp counts per minute - dw dry weight - GABA -amino-n-butyric acid - MW molecular weight - SD standard deviation - ww wet weight  相似文献   
34.
The sodium ion gradient and the membrane potential were found to be the driving forces of sulfate accumulation in the marine sulfate reducer Desulfovibrio salexigens. The protonmotive force of –158 mV, determined by means of radiolabelled membrane-permeant probes, consisted of a membrane potential of –140 mV and a pH gradient (inside alkaline) of 0.3 at neutral pHout. The sodium ion gradient, as measured with silicone oil centrifugation and atomic absorption spectroscopy, was eightfold ([Na+]out/[Na+]in) at an external Na+ concentration of 320 mM. The resulting sodium ionmotive force was –194 mV and enabled D. salexigens to accumulate sulfate 20000-fold at low external sulfate concentrations (<0.1 M). Under these conditions high sulfate accumulation occurred electrogenically in symport with three sodium ions (assuming equilibrium with the sodium ion-motive force). With increasing external sulfate concentrations sulfate accumulation decreased sharply, and a second, low-accumulating system symported sulfate electroneutrally with two sodium ions. The sodium-ion gradient was built up by electrogenic Na+/H+ antiport. This was demonstrated by (i) measuring proton translocation upon sodium ion pulses, (ii) studying uptake of sodium salts in the presence or absence of the electrical membrane potential, and (iii) the inhibitory effect of the Na+/H+ antiport inhibitor propylbenzilylcholin-mustard HCl (PrBCM). With resting cells ATP synthesis was found after proton pulses (changing the pH by three units), but neither after pulses of 500 mM sodium ions, nor in the presence of the uncoupler tetrachorosalicylanilide (TCS). It is concluded that the energy metabolism of the marine strain D. salexigens is based primarily on the protonmotive force and a protontranslocating ATPase.Abbreviations MOPS morpholinopropanesulfonic acid - TCS tetrachlorosalicylanilide - PrBCM propylbenzilylcholin-mustard HCl - Tris tris(hydroxymethyl)aminomethane - TPP+ bromide tetraphenylphosphonium bromide  相似文献   
35.
36.
Food web studies from a range of ecosystems have demonstrated that the fauna contributes about 30% of total net nitrogen mineralization. This results mainly from the activities of microbial-feeding microfauna (nematodes and protozoa). Microbial and microfaunal activity is concentrated at spatially discrete and heterogeneously distributed organic substrates, including the rhizosphere. The dynamics of microfauna and their effect on nutrient cycling and microbial processes at these sites is reviewed. The potential manipulation of microfauna, either as an experimental tool to further understand soil microbial ecology or as a practical means of managing nutrient flows in agroecosystems, is discussed.  相似文献   
37.
Two monoclonal antibodies, which differentially recognise the two species of potato cyst nematodes (PCN), Globodera pallida and G. rostochiensis, are described. They have been shown to have potential for quantification of these two species, recognising proteins of the same molecular weight (34 kD) in both species. Further investigation showed these proteins to have isoelectric points at pH values of 5.7 in G. pallida and 5.9 in G. rostochiensis, in common with the proteins used by Fleming & Marks (1983) to differentiate the species of PCN. They are likely to be structurally very similar, with the same physiological function (and therefore similar concentrations) in the two species. In cross-reactivity tests with a wide range of soil nematode species, the antibodies reacted strongly only with species of the genus Globodera, and thereby confirmed their potential as the basis of a quantitative immunoassay likely to be useful in management of PCN populations.  相似文献   
38.
Dimethylsulfoniopropionate, an osmolyte of marine algae, is thought to be the major precursor of dimethyl sulfide, which plays a dominant role in biogenic sulfur emission. The marine sulfate-reducing bacterium Desulfobacterium strain PM4 was found to degrade dimethylsulfoniopropionate to 3-S-methylmercaptopropionate. The oxidation of one of the methyl groups of dimethylsulfoniopropionate was coupled to the reduction of sulfate; this process is similar to the degradation betaine to dimethylglycine which was described earlier for the same strain. Desulfobacterium PM4 is the first example of an anaerobic marine bacterium that is able to demethylate dimethylsulfoniopropionate.Abbreviations DMSP dimethylsulfoniopropionate - DMS dimethyl sulfide - MMPA 3-S-methylmercaptopropionate  相似文献   
39.
Synopsis Four species of nototheniid fish were sampled from below the sea ice near Cape Armitage, McMurdo Sound:Pagothenia borchgrevinki from just below the ice 1.5 km offshore,Trematomus bernacchii, Trematomus hansoni andTrematomus centronotus from off the bottom in about 20 m of water near the shore. Scale worms and isopods were conspicuous non-planktonic prey, and present in the three benthic fish species. The planktonic pteropod molluscLimacina helicina was numerically common in all four species of fish. The planktonic hyperiid amphipodHyperiella dilatata was also found in all fish species. WhereasP. borchgrevinki is planktivorous in accord with its pelagic habit, theTrematomus spp. clearly also feed on plankton from the water column.T. hansoni is particularly planktivorous, taking smaller copepods thanP. borchgrevinki.  相似文献   
40.
Summary Ten obligate marine fungi have as their principal fatty acids 160, 180, 181n9 and 182n6. The fatty acids ranged from 14 to 22 carbons, completely dominated by those with even numbers of carbons. The amount of unsaturated fatty acids varied between 35% and 80%. Each isolate contained small amounts of the acids 183n3 and 204n6. Branched, hydroxy- or cyclic fatty acids were not detected. Multivariate statistical, i.e. principal component analysis, showed that all ten strains could be distinguished on the basis of their fatty acid composition. These results indicate that the marine fungi do not have an unusual fatty acid composition and suggest that chemometric, multivariate analysis might be employed to confirm taxonomic relationships among these organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号