首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   18篇
  国内免费   10篇
  2023年   3篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   10篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   8篇
  2013年   12篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   8篇
  2002年   10篇
  2001年   4篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1991年   3篇
  1987年   1篇
  1986年   1篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
81.
Kogawa K  Kato N  Kazuma K  Noda N  Suzuki M 《Planta》2007,226(6):1501-1509
A UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase (UA3′5′GT) (EC 2.4.1.-) was purified from the petals of Clitoria ternatea L. (Phaseoleae), which accumulate polyacylated anthocyanins named ternatins. In the biosynthesis of ternatins, delphinidin 3-O-(6″-O-malonyl)-β-glucoside (1) is first converted to delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′-O-β-glucoside (2). Then 2 is converted to ternatin C5 (3), which is delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′,5′-di-O-β-glucoside. UA3′5′GT is responsible for these two steps by transferring two glucosyl groups in a stepwise manner. Its substrate specificity revealed the regioselectivity to the anthocyanin′s 3′- or 5′-OH groups. Its kinetic properties showed comparable k cat values for 1 and 2, suggesting the subequality of these anthocyanins as substrates. However, the apparent K m value for 1 (3.89 × 10−5 M), which is lower than that for 2 (1.38 × 10−4 M), renders the k cat/K m value for 1 smaller, making 1 catalytically more efficient than 2. Although the apparent K m value for UDP-glucose (6.18 × 10−3 M) with saturated 2 is larger than that for UDP-glucose (1.49 × 10−3 M) with saturated 1, the k cat values are almost the same, suggesting the UDP-glucose binding inhibition by 2 as a product. UA3′5′GT turns the product 2 into a substrate possibly by reversing the B-ring of 2 along the C2-C1′ single bond axis so that the 5′-OH group of 2 can point toward the catalytic center. K. Kogawa, N. Kato, K. Kazuma, and N. Noda contributed equally to this work.  相似文献   
82.
At irradiances close to those representing a sunny day, red and green leaves of poinsettia (Euphorbia pulcherrima) showed only minor differences in their photosynthetic capacities despite the strong differences in their pigment composition. However, contrarily to green leaves, red leaves did not show inhibition of photosynthesis at high irradiances, because anthocyanins protected chloroplasts from photoinhibition.  相似文献   
83.
Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin biosynthetic enzymes from different plant species were characterized and employed for pathway construction leading from inexpensive precursors such as flavanones and flavan-3-ols to anthocyanins in Escherichia coli. The recombinant E. coli cells successfully achieved milligram level production of two anthocyanins, pelargonidin 3-O-glucoside (0.98 mg/L) and cyanidin 3-O-gluside (2.07 mg/L) from their respective flavanone precursors naringenin and eriodictyol. Cyanidin 3-O-glucoside was produced at even higher yields (16.1 mg/L) from its flavan-3-ol, (+)-catechin precursor. Further studies demonstrated that availability of the glucosyl donor, UDP-glucose, was the key metabolic limitation, while product instability at normal pH was also identified as a barrier for production improvement. Therefore, various optimization strategies were employed for enhancing the homogenous synthesis of UDP-glucose in the host cells while at the same time stabilizing the final anthocyanin product. Such optimizations included culture medium pH adjustment, the creation of fusion proteins and the rational manipulation of E. coli metabolic network for improving the intracellular UDP-glucose metabolic pool. As a result, production of pelargonidin 3-O-glucoside at 78.9 mg/L and cyanidin 3-O-glucoside at 70.7 mg/L was achieved from their precursor flavan-3-ols without supplementation with extracellular UDP-glucose. These results demonstrate the efficient production of the core anthocyanins for the first time and open the possibility for their commercialization for pharmaceutical and nutraceutical applications.  相似文献   
84.
Birds use fruit colour as honest signal of dietary antioxidant rewards   总被引:2,自引:0,他引:2  
  相似文献   
85.
陈琦  李少伟  贾宇臣  王利 《遗传》2014,36(6):566-573
文章从内蒙古野生蓝莓(Vaccinium uliginosum Lim)中提取花青素, 观察其对口腔癌细胞株KB的增殖及凋亡的作用, 探讨其作用机制与p53基因甲基化的相关性。利用含0.1%盐酸的甲醇提取花青素, 用高效液相色谱-质谱(High performance liquid chromatography-mass spectrometry, HPLC-MS )鉴定花青素的成分。利用四甲基偶氮唑蓝(Methylthiazolyl-tetrazolium, MTT)比色法、流式细胞术、免疫荧光法、免疫细胞化学法和Western blot法分析蓝莓花青素对KB细胞增殖、细胞周期、细胞凋亡和p53蛋白表达的影响; 利用甲基化特异性PCR法(Methylation-specific PCR, MSP)分析蓝莓花青素诱导细胞凋亡与p53基因甲基化的关系。结果显示, 内蒙古自治区的野生蓝莓中至少存在14种花青素成分; 蓝莓花青素呈剂量依赖的方式抑制KB细胞增殖, 诱导细胞周期阻滞在G2/M期, 而且能诱导细胞凋亡; 蓝莓花青素处理后Caspase-9蛋白和细胞色素C的表达明显增加; Western blot结果表明蓝莓花青素可以诱导KB细胞中p53蛋白表达上调; MSP结果表明随蓝莓花青素浓度增加, 未甲基化的p53的比例增加, 说明p53的甲基化状态有所下调。  相似文献   
86.
Prolonged exposure of plants to high fluxes of solar radiation as well as to other environmental stressors disturbs the balance between absorbed light energy and capacity of its photochemical utilization resulting in photoinhibition of and eventually in damage to plants. Under such circumstances, the limiting of the light absorption by the photosynthetic apparatus efficiently augments the general photoprotective mechanisms of the plant cell, such as reparation of macromolecules, elimination of reactive oxygen species, and thermal dissipation of the excessive light energy absorbed. Under stressful conditions, plants accumulate, in different cell compartments and tissue structures, pigments capable of attenuation of the radiation in the UV and visible parts of the spectrum. To the date, four principle key groups of photoprotective pigments are known: mycosporine-like amino acids, phenolic compounds (including phenolic acids, flavonols, and anthocyanins), alkaloids (betalains), and carotenoids. The accumulation of UV-absorbing compounds (mycosporine-like amino acids and phenolics in lower and higher plants, respectively) is a ubiquitous mechanism of adaptation to and protection from the damage by high fluxes of solar radiation developed by photoautotrophic organisms at the early stages of their evolution. Extrathylakoid carotenoids, betalains, and anthocyanins play an important role in long-term adaptation to the illumination conditions and in protection of plants against photodamage. A prominent feature of certain plant taxa lacking some classes of photoprotective pigments (such as anthocyanins) is their substitution by other compounds (e.g. keto-carotenoids or betalains) disparate in terms of chemical structure and subcellular localization but possessing close spectral properties.  相似文献   
87.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   
88.
Ethylene-insensitive3(EIN3)和 EIN3-like1(EIL1)蛋白是乙烯信号转导途径中一类重要的核转录因子。花青素是植物体中的一类水溶性天然色素,在植物的许多生理过程中起重要作用。本研究以拟南芥双突变体ein3-1eil1-3为研究材料,通过RT-PCR技术确定了拟南芥双突变体ein3-1eil1-3中EIN3和EIL1基因均已被敲除,单突变体ein3-1中的EIN3基因被敲除。通过肉眼定性观察发现突变体ein3-1eil1-3的种子和叶片内均呈紫色。通过紫外分光光度计定量分析发现,花青素积累量也明显比突变体ein3-1和野生型多。通过GUS染色发现EIN3启动子主要在花、柱头、成熟花粉、种子胚和果荚等组织中有较强的表达。这与突变体ein3-1eil1-3的种子和叶片内均呈紫色并花青素含量增高一致。因此,拟南芥转录因子EIN3可能与EIL1共同参与抑制花青素的合成。  相似文献   
89.
Aims Plants in their natural habitats frequently cope with a multitude of abiotic stresses, such as high light intensity, extreme temperatures and water deficit, which often co-occur during periods of drought, especially in semi-arid and arid regions. Exposure of plants to stressful environmental conditions usually induce overproduction of reactive oxygen species (ROS) that, as highly toxic derivatives of O 2, can assault all cell macromolecules, leading to the disruption of cellular homeostasis and, consequently, the uncoupling of major metabolic processes, the photosynthesis and photorespiration. In order to minimize ROS-mediated cellular damage, plants have evolved highly efficient antioxidative defense systems that include both enzymatic and non-enzymatic components. Since abiotic stress can also operate as a strong evolutionary force that shapes adaptations in natural plant populations, the aim of this study was to examine the seasonal variation patterns of two distinct antioxidative systems, ROS-scavenging enzymes and anthocyanin pigments, in the leaf tissue of a steppe plant, Iris pumila, as expressed under contrasting light conditions that the species regularly experiences in the wild.Methods We selected two natural populations of I.pumila inhabiting the alternative radiation environments in the Deliblato Sands, a sun-exposed dune site and a woodland understory. The specific activity of three antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) and the content of total anthocyanins were examined in leaves of I.pumila plants collected from each of the 31 Iris clones (17 in the exposed population and 14 in the shaded population) once during each of the three seasons, spring, summer and autumn in 2004. Specifically, a fully expanded leaf was cut from each clonal plant between 15:00 and 16:00 h, immediately frozen in liquid nitrogen and stored at ?70°C until preparation.Important findings Generally, all three antioxidative enzymes were up-regulated in summer-harvested leaves compared to their spring or autumn counterparts, as was observed for the concentration of foliar anthocyanins, indicating that strengthening of antioxidant systems was the key mechanism for long-term acclimatization of I.pumila plants to stressful environmental conditions within their natural ecological niches. When plants from contrasting radiation environments were compared, SOD and CAT activities appeared to be greater in shade-exposed than in sun-exposed leaves. Conversely, POD activity and the content of foliar anthocyanins were notably higher in foliage experiencing full sunlight relative to those developed under vegetation canopy, suggesting the synergistic function of these two molecules in protecting leaf cells against photoinhibitory and photooxidative effects of strong light.  相似文献   
90.
In a field experiment with a mangrove species Suaeda maritima L. grown under ambient and supplementary UV-B radiation corresponding to 20 % ozone depletion, changes in growth and contents of photosynthetic and UV-absorbing pigments were determined. Supplemental UV-B irradiation for 9 d significantly reduced the growth and concentration of photosynthetic pigments. However, anthocyanin and flavonoid contents were significantly increased in UV-treated plants and which could be reduce the UV-B penetration and damage to the underlying tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号