首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6712篇
  免费   168篇
  国内免费   226篇
  7106篇
  2023年   57篇
  2022年   64篇
  2021年   59篇
  2020年   80篇
  2019年   116篇
  2018年   156篇
  2017年   71篇
  2016年   95篇
  2015年   91篇
  2014年   330篇
  2013年   505篇
  2012年   217篇
  2011年   314篇
  2010年   217篇
  2009年   278篇
  2008年   307篇
  2007年   325篇
  2006年   273篇
  2005年   282篇
  2004年   243篇
  2003年   225篇
  2002年   162篇
  2001年   125篇
  2000年   97篇
  1999年   145篇
  1998年   129篇
  1997年   114篇
  1996年   118篇
  1995年   118篇
  1994年   127篇
  1993年   90篇
  1992年   106篇
  1991年   95篇
  1990年   95篇
  1989年   113篇
  1988年   85篇
  1987年   92篇
  1986年   88篇
  1985年   101篇
  1984年   136篇
  1983年   79篇
  1982年   108篇
  1981年   83篇
  1980年   74篇
  1979年   75篇
  1978年   69篇
  1977年   49篇
  1976年   44篇
  1974年   23篇
  1973年   25篇
排序方式: 共有7106条查询结果,搜索用时 15 毫秒
81.
A particular lot of the zwitterionic buffer, 2(N-morpholino) ethane sulfonic acid (MES), contained a contaminant that inhibited a number of fungal NADP-dependent dehydrogenases. Enzymes that were particularly sensitive include 6-phosphogluconate dehydrogenases fromCryptococcus neoformans andSchizophyllum commune and glucose-6-phosphate dehydrogenase fromSchizophyllum commune. A number of NADP-dependent dehydrogenases of animal origin were tested and all were completely insensitive to inhibition except for rat liver 6-phosphogluconate dehydrogenase, which was 10-fold less sensitive than theCryptococcal enzyme. The pattern of inhibition in all cases was linear competitive versus NADP. The inhibitor has been purified and identified as an ethylenesulfonic acid oligomer. This inhibitor holds promise as a model compound for the development of a specific antifungal agent.  相似文献   
82.
The electron donor (component B) to the methyl coenzyme M methylreductase system from Methanosarcina thermophila was isolated as the 7-methyl derivative and characterized. Gas chromatography-mass spectrometry and 1H NMR analyses identified this derivative as 7-methylthioheptanoylthreonine phosphate (CH3-S-HTP), indicating that the original component B had the same structure (HS-HTP) as previously determined for component B from Methanobacterium thermoautotrophicum. The heterodisulfide of HS-HTP and coenzyme M (HS-CoM, 2-mercaptoethanesulfonate) was enzymatically reduced in cell extracts using electrons supplied by either H2 or CO, confirming that HS-HTP was a functional molecule in M. thermophila.  相似文献   
83.
In the gram negative, obligately ethanologenic bacterium Zymomonas mobilis a pyruvate dehydrogenase complex was identified and the complex was enriched from cell extracts. This multienzyme complex is responsible for acetyl-CoA biosynthesis from pyruvate. No activities of related multienzyme complexes, 2-ketoglutarate dehydrogenase and branched chain keto acid dehydrogenase, could be detected.  相似文献   
84.
85.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   
86.
 CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) is one of the four known nickel enzymes. It is a bifunctional protein that catalyzes the oxidation of CO to CO2 at a nickel iron-sulfur cluster (Cluster C) and a remarkable condensation reaction between a methyl group (donated from a methylated corrinoid iron-sulfur protein), carbon monoxide, and coenzyme A to form acetyl-CoA at a separate nickel iron-sulfur cluster (Cluster A). This review focuses on the current understanding of the structure and function of Cluster A and on related model chemistry. It describes studies that uncovered the first example of a biological organometallic reaction sequence. The mechanism of acetyl-CoA synthesis includes enzymebound methylnickel, iron-carbonyl, and acylmetal intermediates. Discovery of the methylnickel species constituted the first example of an alkylnickel species in biology and unveiled a new biological role for nickel. Received: 10 April 1996 / Accepted: 4 July 1996  相似文献   
87.
This is the first report of the purification of tauropine dehydrogenase (NAD: tauropine oxidoreductase) from a polychaete worm. In the sandwormArabella iricolor Montagu (Polychaet: Errantia), two forms of TaDH were detected: major component (pl = 7.5) and minor one (pI = 6.4). The major TaDH component was purified to homogeneity by means of (NH4)2SO4 precipitation, anion-exchange, affinity, chromatofocusing and hydrophobic chromatography, and characterized. From the molecular mass of 43.7 kDa obtained by rapid gel-filtration and that of 43.5 kDa by SDS-PAGE, the sandworm enzyme appeared to be a monomeric protein. Maximum rates of reduction of pyruvate and oxidation of tauropine were observed at pH 7.0 and 8.5, respectively. Pyruvate and taurine were preferred substrate for the enzyme. Apparent Km values determined using constant co-substrate concentrations were: 35.7 mM, 0.34 mM, and 0.036 mM for taurine, pyruvate and NADH, respectively, in the tauropine synthesizing reaction; and 4.8 mM and 0.051 mM for tauropine and NAD+, respectively, in the tauropine oxidizing reaction. The tauropine synthesizing reaction was subject to substrate inhibition by pyruvate: maximum rate was observed at 2.5–3.0 mM (inhibitory range of pyruvate concentration producing half-maximal rate was 26.8 mM).  相似文献   
88.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   
89.
The metabolic significance of Se in plants is not well documented, though the presence of many selenoenzymes in bacteria and the essentiality of Se in higher animals is established. Since germination is an active process in plant growth and metabolism, the effect of Se was investigated in germinatingVigna radiata L, a nonaccumulating Sedeficient legume. Growth and protein were enhanced in seedlings supplemented with selenium (Se) as sodium selenite in the medium up to 1 μg/mL. The pattern of uptake of75Se in the differentiating tissues and the subcellular distribution were investigated. The percentage of incorporation of75Se was greater in the mitochondria at the lowest level (0.5 μg/mL) of Se supplementation compared to higher levels of Se exposure. Proteins precipitated from the postmitochondrial supernatant fractions, when separated by means of polyacrylamide gel electrophoresis (PAGE), indicated a major selenoprotein in the seedlings germinated at 2.0 μg/mL Se. In seedlings grown with supplemented Se, enhanced respiratory control ratio and succinate dehydrogenase activity were observed in the mitochondria of tissues, indicative of a role for Se in mitochondrial membrane functions.  相似文献   
90.
Stressed plant cells often show increased oxygen uptake which can manifest itself in the transient production of active oxygen species, the oxidative burst. There is a lack of information on the redox status of cells during the early stages of biotic stress. In this paper we measure oxygen uptake and the levels of redox intermediates NAD/NADH and ATP and show the transient induction of the marker enzyme for redox stress, alcohol dehydrogenase. Rapid changes in the redox potential of elicitor-treated suspension cultures of French bean cells indicate that, paradoxically, during the period of maximum oxygen uptake the levels of ATP and the NADH/NAD ratio fall in a way that indicates the occurrence of stress in oxidative metabolism. This period coincides with the maximum production of active oxygen species particularly H2O2. The cells recover and start producing ATP immediately upon the cessation of H2O2 production. This indicates that the increased O2 uptake is primarily incorporated into active O2 species. A second consequence of these changes is probably a transient compromising of the respiratory status of the cells as indicated in expression of alcohol dehydrogenase. Elicitor-induced bean ADH was purified to homogeneity and the Mr 40 000 polypeptide was subjected to amino acid sequencing. 15% of the whole protein was sequenced from three peptides and was found to have nearly 100% sequence similarity to the amino acid sequence for pea ADH1 (PSADH1). The cDNA coding for the pea enzyme was used to demonstrate the transient induction of ADH mRNA in elicitor-treated bean cells. Enzyme activity levels also increased transiently subsequently. Increased oxygen uptake has previously been thought to be associated with provision of energy for the changes in biosynthesis that occur rapidly after perception of the stress signal. However the present work shows that this rapid increase in oxygen uptake as a consequence of elicitor action is not wholly associated with respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号