首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20058篇
  免费   317篇
  国内免费   255篇
  2023年   75篇
  2022年   143篇
  2021年   178篇
  2020年   163篇
  2019年   208篇
  2018年   269篇
  2017年   169篇
  2016年   189篇
  2015年   541篇
  2014年   1626篇
  2013年   1476篇
  2012年   1606篇
  2011年   2265篇
  2010年   1988篇
  2009年   941篇
  2008年   901篇
  2007年   786篇
  2006年   703篇
  2005年   607篇
  2004年   555篇
  2003年   544篇
  2002年   315篇
  2001年   176篇
  2000年   213篇
  1999年   258篇
  1998年   284篇
  1997年   269篇
  1996年   245篇
  1995年   296篇
  1994年   287篇
  1993年   242篇
  1992年   218篇
  1991年   201篇
  1990年   167篇
  1989年   161篇
  1988年   136篇
  1987年   124篇
  1986年   87篇
  1985年   144篇
  1984年   177篇
  1983年   157篇
  1982年   164篇
  1981年   82篇
  1980年   111篇
  1979年   74篇
  1978年   28篇
  1977年   25篇
  1976年   18篇
  1974年   8篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Elongation factor G (EF-G) catalyzes the translocation step of protein biosynthesis. Genomic analysis suggests that two isoforms of this protein occur in mitochondria. The region of the cDNA coding for the mature sequence of isoform 1 of human mitochondrial EF-G (EF-G1(mt)) has been cloned and expressed in Escherichia coli. The recombinant protein has been purified to near homogeneity by chromatography on Ni-NTA resins and cation exchange high performance liquid chromatography. EF-G1(mt) is active on both bacterial and mitochondrial ribosomes. Human EF-G1(mt) is considerably more resistant to fusidic acid than many bacterial translocases. A molecular model for EF-G1(mt) has been created and analyzed in the context of its relationship to the translocases from other systems.  相似文献   
942.
Methodology to rapidly express milligram quantities of recombinant proteins through the Lipofectin-mediated transfection of insect cells in small-scale, protein-free suspension culture is presented. The transfection phase in suspension culture was first optimized using the green fluorescence protein coupled with FACs analysis to examine the effect of variables such as the transfection media, duration, and cell density on transfection efficiency and expression level. The recombinant protein production phase was optimized using secreted alkaline phosphatase (SEAP) as a reporter protein to evaluate the cell seeding density and harvest time. Using this method, 5 secreted, 2 intracellular, and 1 chimeric protein were expressed at levels ranging from 6 to 50 mg/L. Furthermore, the ability to purify over 2 mg of His(6)-tagged SEAP by immobilized metal affinity chromatography from 50 mL insect cell culture medium to greater than 95% purity was also demonstrated. This method is suitable for scale-up and high-throughput applications.  相似文献   
943.
The lens protein, alpha-crystallin, is a molecular chaperone that prevents the thermal aggregation of other proteins. The C-terminal domain of this protein (homologous to domains present in small heat-shock proteins) is implicated in chaperone function, although the domain itself has been reported to show no chaperone activity. Here, we show that the domain can be excised out of the intact alphaB polypeptide and recovered directly in pure form through the transfer of CNBr digests of whole lens homogenates into urea-containing buffer, followed by dialysis-based refolding of digests under acidic conditions and a single gel-filtration purification step. The folded (beta sheet) domain thus obtained is found to be (a) predominantly trimeric, and to display (b) significant surface hydrophobicity, (c) a marked tendency to undergo degradation, and (d) a tendency to aggregate upon heating, and on exposure to UV light. Thus, the twin 'chaperone' features of multimericity and surface hydrophobicity are clearly seen to be insufficient for this domain to function as a chaperone. Since alpha-crystallin interacts with its substrates through hydrophobic interactions, the hydrophobicity of the excised domain indicates that separation of domains may regulate function; at the same time, the fact is also highlighted that surface hydrophobicity is a liability in a chaperone since heating strengthens hydrophobic interactions and can potentially promote self-aggregation. Thus, it would appear that the role of the N-terminal domain in alpha-crystallin is to facilitate the creation of a porous, hollow structural framework of >/=24 subunits in which solubility is effected through increase in the ratio of exposed surface area to buried volume. Trimers of interacting C-terminal domains anchored to this superstructure, and positioned within its interior, might allow hydrophobic surfaces to remain accessible to substrates without compromising solubility.  相似文献   
944.
Modification by SUMO proteins appears to be very common in eukaryotic cells. Many proteins have been reported to be sumoylated, at least under certain circumstances, in vivo, and new examples get published every month. On the other hand, sumoylation is, in essence, a way to construct branched proteins or protein fusions. Obtention of pure sumoylated proteins from eukaryotic cells is not easy because of the dynamic nature of this modification and the large number of sumoylated proteins in vivo. Production of sumoylated proteins in vitro requires the previous purification of most of the components of the pathway, and has the typical limitations of such systems. In this paper, we describe a method to quantitatively produce sumoylated proteins in vivo in Escherichia coli as a way to obtain large quantities of specifically sumoylated target proteins with a high degree of purity, to generate fusion proteins not limited to N- or C-end additions, and to polymerize proteins by covalent linkage.  相似文献   
945.
Understanding, and ultimately predicting, how a 1-D protein chain reaches its native 3-D fold has been one of the most challenging problems during the last few decades. Data increasingly indicate that protein folding is a hierarchical process. Hence, the question arises as to whether we can use the hierarchical concept to reduce the practically intractable computational times. For such a scheme to work, the first step is to cut the protein sequence into fragments that form local minima on the polypeptide chain. The conformations of such fragments in solution are likely to be similar to those when the fragments are embedded in the native fold, although alternate conformations may be favored during the mutual stabilization in the combinatorial assembly process. Two elements are needed for such cutting: (1) a library of (clustered) fragments derived from known protein structures and (2) an assignment algorithm that selects optimal combinations to "cover" the protein sequence. The next two steps in hierarchical folding schemes, not addressed here, are the combinatorial assembly of the fragments and finally, optimization of the obtained conformations. Here, we address the first step in a hierarchical protein-folding scheme. The input is a target protein sequence and a library of fragments created by clustering building blocks that were generated by cutting all protein structures. The output is a set of cutout fragments. We briefly outline a graph theoretic algorithm that automatically assigns building blocks to the target sequence, and we describe a sample of the results we have obtained.  相似文献   
946.
Circular dichroism spectra of proteins are sensitive to protein secondary structure. The CD spectra of alpha-rich proteins are similar to those of model alpha-helices, but beta-rich proteins exhibit CD spectra that are reminiscent of CD spectra of either model beta-sheets or unordered polypeptides. The existence of these two types of CD spectra for beta-rich proteins form the basis for their classification as betaI- and betaII-proteins. Although the conformation of beta-sheets is largely responsible for the CD spectra of betaI-proteins, the source of betaII-protein CD, which resembles that of unordered polypeptides, is not completely understood. The CD spectra of unordered polypeptides are similar to that of the poly(Pro)II helix, and the poly(Pro)II-type (P2) structure forms a significant fraction of the unordered conformation in globular proteins. We have compared the beta-sheet and P2 structure contents in beta-rich proteins to understand the origin of betaII-protein CD. We find that betaII-proteins have a ratio of P2 to beta-sheet content greater than 0.4, whereas for betaI-proteins this ratio is less than 0.4. The beta-sheet content in betaI-proteins is generally higher than that in betaII-proteins. The origin of two classes of CD spectra for beta-rich proteins appears to lie in their relative beta-sheet and P2 structure contents.  相似文献   
947.
After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.  相似文献   
948.
Low in vivo solubility of recombinant proteins expressed in Escherichia coli can seriously hinder the purification of structural samples for large-scale proteomic NMR and X-ray crystallography studies. Previous results from our laboratory have shown that up to one half of all bacterial and archaeal proteins are insoluble when overexpressed in E. coli. Although a number of strategies may be used to increase in vivo protein solubility, there are no generally applicable methods, and the expression of each insoluble recombinant protein must be individually optimized. For this reason, we have tested a generic denaturation/refolding protein purification procedure to assess the number of structural samples that could be generated by using this methodology. Our results show that a denaturation/refolding protocol is appropriate for many small proteins (相似文献   
949.
The Peutz-Jeghers syndrome (PJS) is a hereditary disorder that predisposes an individual to benign and malignant tumors in multiple organ systems. Recently, the locus responsible for PJS was mapped genetically to the LKB1 gene, with a subsequent investigation proving that it is responsible for most cases of PJS. LKB1 encodes a nuclear serine/threonine protein kinase, and potential tumor-suppressing activity has been attributed to LKB1 kinase. However, how LKB1 exerts its tumor-suppressing function remains to be determined. In this report, we describe the identification of a putative human LKB1-interacting protein, FLIP1, using the yeast two-hybrid system. Two regions of the LKB1 sequence have been determined to be crucial for the interaction with FLIP1. FLIP1 encodes a protein of 429 amino acids with a predicted molecular weight of 47 kd. In contrast to LKB1, which is mainly nuclear, FLIP1 is a cytoplasmic protein, and its expression is ubiquitous in all human tissues examined to date. Interestingly, deletion of the 195 N- terminal amino acids allows FLIP1 to enter the nucleus, suggesting the presence of a regulatory mechanism through its N-terminus for nuclear entry. In addition, we found that ectopic expression of FLIP1 selectively blocks cytokine-induced NF-kappaB activation. The involvement of FLIP1 in the regulation of NF-kappaB activity may shed new light on the role of LKB1 in tumor suppression.  相似文献   
950.
Euplectrus sp. near plathypenae is an ectoparasitoid that can parasitize from 3rd to day 0-6th instar Pseudaletia separata. The developmental period of the parasitoid from the egg to the pupal stage is about 13 days. Parasitized hosts are developmentally arrested and never molt to the next stadium. The injection of venom fluid results in similar effects on P. separata larvae as does parasitization. The inhibitory effect of the venom on molting was dose dependent. Injection of 0.3 female equivalents of venom into day 0-5th host instar resulted in a similar developmental arrest as seen in parasitized hosts. The amount of total lipid in the hemolymph of the host increased as a function of the amount of venom injected, while the lipid content of the fat body was similar to lipid levels in the fat body of parasitized larvae. The amount of total protein in the hemolymph also increased when venom was injected, whereas the protein level of the fat body did not increase. The lipid concentration within the parasitoid larva was maintained at the same level throughout larval development, but increased before pupation. We conclude that the injected venom increased the hemolymph content of lipid and protein to support the growth and development of the ectoparasitoid larva.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号