首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1840篇
  免费   141篇
  国内免费   13篇
  2023年   14篇
  2022年   23篇
  2021年   53篇
  2020年   47篇
  2019年   49篇
  2018年   54篇
  2017年   45篇
  2016年   44篇
  2015年   73篇
  2014年   143篇
  2013年   155篇
  2012年   105篇
  2011年   143篇
  2010年   99篇
  2009年   130篇
  2008年   88篇
  2007年   102篇
  2006年   83篇
  2005年   93篇
  2004年   64篇
  2003年   26篇
  2002年   32篇
  2001年   19篇
  2000年   26篇
  1999年   35篇
  1998年   15篇
  1997年   17篇
  1996年   26篇
  1995年   21篇
  1994年   15篇
  1993年   16篇
  1992年   10篇
  1991年   8篇
  1990年   11篇
  1989年   9篇
  1988年   4篇
  1987年   10篇
  1986年   8篇
  1985年   8篇
  1984年   18篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1994条查询结果,搜索用时 640 毫秒
91.
口腔内金属材料对磁共振检查的影响   总被引:2,自引:0,他引:2  
检测口腔内常用金属材料在磁共振检查时是否有伪影和伪影的严重程度。对21种口腔内常用金属材料做了磁共振成像测试,磁共振仪磁场强度为1.5T,所用序列是梯度回波。铸金片、银汞合金、银尖等9种材料无伪影;钛合金和金属烤瓷成品有轻度伪影;牙用固位钉、椿钉等10种材料有严重伪影。部分口腔内金属材料会引起严重伪影,影响图象质量,所以在做口腔颌面部和服部磁共振成像时,须引起重视。  相似文献   
92.
We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126±2 kDa composed of two subunits, =93±3 kDa and =32±2 kDa, which contains 6±1 Fe/molecule, 0.4±0.1 Mo/molecule, 0.3±0.1 W/molecule, and 1.3±0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5–40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d1 configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.Abbreviations AOR aldehyde oxidoreductase - FDH formate dehydrogenase - NAP periplasmic nitrate reductase - SRB sulfate-reducing bacteria  相似文献   
93.
Fifty normal noninfarct patients and 12 cases with infarcts of the cerebrum were examined with routine magnetic resonance imaging and echo-planar diffusion-weighted imaging. The diffusion-weighted three-dimensional images were reconstructed with volume-rendering processing on workstation. Precentral gyrus, post-central gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown of all structures with an arbitrary score of 2.61–2.77. Supramarginal gyrus, middle frontal gyrus, inferior frontal gyrus and lateral sulcus were clearly shown in the majority of the cerebra with average scores of 2.0–2.49; angular gyrus, inferior frontal sulcus and superior temporal gyrus were not demonstrated satisfactorily and their average scores were 1.67–1.89. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus were difficult to identify, and thus had average scores of 0.87–1.26. Brain surface structures were better displayed in the older group of individuals than in the younger group. The structures in the 12 cases with acute or chronic cerebrum infarcts were also satisfactorily demonstrated with this new technique.  相似文献   
94.
Binding of the product inhibitor p-nitrophenol to the monoclonal esterolytic antibody NPN43C9 has been investigated by performing NMR spectroscopy of the heterodimeric variable-domain fragment (Fv) of the antibody in the presence and absence of inhibitor. Structural information from changes in chemical shift upon binding has been related to the changes in local dynamics in the active site of the catalytic antibody using NMR relaxation measurements. Significant changes in the chemical shifts of the backbone resonances upon binding extend beyond the immediate vicinity of the antigen binding site into the interface between the two associated polypeptides that form the Fv heterodimer, a possible indication that the binding of ligand causes a change in the relative orientations of the component light (V(L)) and heavy (V(H)) chain polypeptides. Significant differences in backbone dynamics were observed between the free Fv and the complex with p-nitrophenol. A number of resonances, including almost all of the third hypervariable loop of the light chain (L3), were greatly broadened in the free form of the protein. Other residues in the antigen-binding site showed less broadening of resonances, but still required exchange terms (R(ex)) in the model-free dynamics analysis, consistent with motion on a slow timescale in the active site region of the free Fv. Binding of p-nitrophenol caused these resonances to sharpen, but some R(ex) terms are still required in the analysis of the backbone dynamics. We conclude that the slow timescale motions in the antigen-binding site are very different in the bound and free forms of the Fv, presumably due to the damping of large-amplitude motions by the bound inhibitor.  相似文献   
95.
We present the application of a nonparametric method to performing functional principal component analysis for functional curve data that consist of measurements of a random trajectory for a sample of subjects. This design typically consists of an irregular grid of time points on which repeated measurements are taken for a number of subjects. We introduce shrinkage estimates for the functional principal component scores that serve as the random effects in the model. Scatterplot smoothing methods are used to estimate the mean function and covariance surface of this model. We propose improved estimation in the neighborhood of and at the diagonal of the covariance surface, where the measurement errors are reflected. The presence of additive measurement errors motivates shrinkage estimates for the functional principal component scores. Shrinkage estimates are developed through best linear prediction and in a generalized version, aiming at minimizing one-curve-leave-out prediction error. The estimation of individual trajectories combines data obtained from that individual as well as all other individuals. We apply our methods to new data regarding the analysis of the level of 14C-folate in plasma as a function of time since dosing of healthy adults with a small tracer dose of 14C-folic acid. A time transformation was incorporated to handle design irregularity concerning the time points on which the measurements were taken. The proposed methodology, incorporating shrinkage and data-adaptive features, is seen to be well suited for describing population kinetics of 14C-folate-specific activity and random effects, and can also be applied to other functional data analysis problems.  相似文献   
96.
Simultaneous and continuous measurements of extracellular pH, potassium (K(+)), and lactate (L(-)) in ischemic rabbit papillary muscle are presented for the first time. Potentiometric pH and K(+) sensors and an amperometric lactate biosensor were used. These miniature electrodes were previously developed and individually tested for this purpose. The pH sensor was based on an iridium oxide layer electrodeposited on a planar platinum electrode fabricated on a flexible substrate. The potentiometric K(+) sensor was based on a polymeric membrane and valinomycin ionophore. The L(-) biosensor was based on lactate oxidase and an organic conducting salt polarized at 0.15V vs Ag/AgCl reference electrode. The utility of this novel analytical system to cardiovascular research was demonstrated by using the system to study the interrelationship of cellular K(+) and lactate loss in ischemic myocardium, and the role of extracellular pH and buffer capacity on this relationship. The results indicated: (i) sequential brief episodes of ischemia produced reproducible trends of L(-), pH, and K(+) changes during the first three episodes, (ii) extracellular L(-) increased with increasing buffer capacity of extracellular compartment, (iii) the patterns of extracellular L(-) and K(+) changes were not related directly, and (iv) L(-) transport and lactic acid diffusion were not the primary cause of extracellular acidosis during ischemia.  相似文献   
97.
The study of in vivo developmental events has undergone significant advances with the advent of biological molecular imaging techniques such as computer enhanced light microscopy imaging, positron emission tomography (PET), micro-CT, and magnetic resonance imaging (MRI). MRI has proven to be a particularly powerful tool in clinical and biological settings. Images can be acquired of opaque living animals, with the benefit of tracking events of extended periods of time on the same specimen. Contrast agents are routinely used to enhance regions, tissues, and cells that are magnetically similar but histologically distinct. A principal barrier to the development of MR contrast agents for investigating developmental biological questions is the ability to deliver the agent across cellular membranes. As part of our research, we are investigating a number of small molecules that facilitate transport of charged and uncharged species across cell membranes. Here we describe the synthesis and testing of a Gd(III)-based MR contrast agent conjugated to polyarginine that is able to permeate cell membranes. We confirmed cellular uptake of the agent using two-photon laser microscopy to visualize a Eu(III) derivative of the contrast agent in cell culture, and verified this uptake by T1 analysis of the Gd(III) agent in cells.Abbreviations DOTA 1,4,7,10-tetraazacyclododecane-N,N,N,N-tetraacetic acid - DOTA(tris-t-Bu ester) 1,4,7,10-tetraazacyclododecane-1,4,7-tris(acetic acid-tert-butyl ester)-10-acetic acid - DO3A(tris-t-Bu ester) 1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane - MRI magnetic resonance imaging - PET positron emission tomography - TPLM two-photon laser microscopy  相似文献   
98.
A novel approach to understanding the pathophysiology of schizophrenia has been the investigation of membrane composition and functional perturbations, referred to as the "Membrane Hypothesis of Schizophrenia." The evidence in support of this hypothesis has been accumulating in findings in patients with schizophrenia of reductions in phospholipids and essential fatty acids various peripheral tissues. Postmortem studies indicate similar reductions in essential fatty acids in the brain. However, the use of magnetic resonance spectroscopy (MRS) has provided an opportunity to examine aspects of membrane biochemistry in vivo in the living brain. MRS is a powerful, albeit complex, noninvasive quantitative imaging tool that offers several advantages over other methods of in vivo biochemical investigations. It has been used extensively in investigating brain biochemistry in schizophrenia. Phosphorus MRS (31P MRS) can provide important information about neuronal membranes, such as levels of phosphomonoesters that reflect the building blocks of neuronal membranes and phosphodiesters that reflect breakdown products. 31P MRS can also provide information about bioenergetics. Studies in patients with chronic schizophrenia as well as at first episode prior to treatment show a variety of alterations in neuronal membrane biochemistry, supportive of the membrane hypothesis of schizophrenia. Below, we will briefly review the principles underlying 31P MRS and findings to date. Magnetic resonance spectroscopy (MRS) is a powerful, albeit complex, imaging tool that permits investigation of brain biochemistry in vivo. It utilizes the magnetic resonance imaging hardware. It offers several advantages over other methods of in vivo biochemical investigations. MRS is noninvasive, there is no radiation exposure, does not require the use of tracer ligands or contrast media. Because of it is relatively benign, repeated measures are possible. It has been used extensively in investigating brain biochemistry in schizophrenia.  相似文献   
99.
This letter re-examines a recently published calculation of the forces exerted on a membrane ion channel by a cation passing through in the presence of an externally applied magnetic field. We show here, in contradiction to the originally published calculation, that the forces generated due to the Lorentz force of the magnetic field on the cation are negligible compared with the forces required to activate an ion channel protein conformation change associated with the gating of the channel. Received: 11 August 1998 / Revised version: 25 October 1998 / Accepted: 11 November 1998  相似文献   
100.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号