首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4076篇
  免费   138篇
  国内免费   174篇
  4388篇
  2023年   38篇
  2022年   75篇
  2021年   72篇
  2020年   67篇
  2019年   117篇
  2018年   121篇
  2017年   72篇
  2016年   63篇
  2015年   83篇
  2014年   207篇
  2013年   232篇
  2012年   219篇
  2011年   214篇
  2010年   128篇
  2009年   175篇
  2008年   177篇
  2007年   207篇
  2006年   148篇
  2005年   147篇
  2004年   137篇
  2003年   105篇
  2002年   95篇
  2001年   36篇
  2000年   40篇
  1999年   62篇
  1998年   50篇
  1997年   31篇
  1996年   44篇
  1995年   52篇
  1994年   38篇
  1993年   47篇
  1992年   51篇
  1991年   60篇
  1990年   34篇
  1989年   36篇
  1988年   33篇
  1987年   19篇
  1985年   72篇
  1984年   124篇
  1983年   74篇
  1982年   93篇
  1981年   88篇
  1980年   71篇
  1979年   53篇
  1978年   40篇
  1977年   53篇
  1976年   44篇
  1975年   44篇
  1974年   47篇
  1973年   23篇
排序方式: 共有4388条查询结果,搜索用时 15 毫秒
81.
Three types of ionic current essentially determine the firing pattern of nerve cells: the persistent Na+ current, the M current and the low-voltage-activated Ca2+ current. The present article summarizes recent experiments concerned with the basic properties of these currents. Keynes and Meves (Proc R Soc Lond B (1993) 253, 61–68) studied the persistent or steady-state Na+ current on dialysed squid axons and measured the probability of channel opening both for the peak and the steady-state Na+ current (PFpeak and PFss) as a function of voltage. Whereas PFpeak starts to rise at −50 mV and reaches a maximum at +40 to +50 mV, PFss only begins to rise appreciably at around 0 mV and is still increasing at +100 mV. This differs from observations on vertebrate excitable tissues where the persistent Na+ current turns on in the threshold region and saturates at around 0 mV. Schmitt and Meves (Pflügers Arch (1993) 425, 134–139) recorded M current, a non-inactivating K+ current, from NG108-15 neuroblastoma × glioma hybrid cells, voltage-clamped in the whole-cell mode, and studied the effects of phorbol 12,13-dibutyrate (PDB), an activator of protein kinase C (PKC), and arachidonic acid (AA). PDB and AA both decreased IM, the effective concentrations being 0.1–1 μM and 5–25 μM, respectively; while the PDB effect was regularly observed, the M current depression by AA was highly variable from cell to cell. The PKC 19–31 peptide, an effective inhibitor of PKC, in a concentration of 1 μM almost totally prevented the effects of PDB and AA on M current, suggesting that both are mediated by PKC. Schmitt and Meves (Pflügers Arch (1994a) 426, Suppl R 59) measured low-voltage-activated (l-v-a) and high-voltage-activated (h-v-a) Ca2+ currents on NG108-15 cells and investigated the effect of AA and PDB on both types of current. At pulse potentials > −20 mV, AA (25–100 μM) decreased l-v-a and h-v-a ICa. The decrease was accompanied by a small negative shift and a slight flattening of the activation and inactivation curves of the l-v-a ICa. The AA effect was not prevented by 50 μM eicosa-5,8,11,14-tetraynoic acid (ETYA), an inhibitor of AA metabolism, or PKC 19–31 peptide and not mimicked by 0.1–1 μM PDB. Probably, AA acts directly on the channel protein or its lipid environment. The physiological relevance of these three sets of observations is briefly discussed.  相似文献   
82.
Two recombinant barley cystatins, HvCPI5 and HvCPI6, have been tested in vitro against promastigotes and intracellular amastigotes of Leishmania infantum in the J774 monocytic cell line. Toxicity of cystatins for J774 cells was also determined. In addition, a comparison between direct counts of intracellular amastigotes and quantitation of burden by Q-PCR was carried out. Low concentrations (2 μM) from both cystatins were unable to inhibit promastigote replication. HvCPI5 was toxic for mammalian cells; 0.1 μM reduced by more than 50% the cell viability. On the contrary, HvCPI6 did not exhibit any toxicity for J774 cells up to 6 μM and inhibited the intracellular amastigote multiplication. Dose-response analysis showed that 4.8 μM HvCPI6 reduced by >90% the intracellular parasite load and had an approximate IC50 value of 1.5 μM. Comparable results were obtained by direct counting of intracellular amastigotes and Q-PCR. Results point towards the direct inhibition of amastigote multiplication by HvCPI6 and the interest of this recombinant cystatin in the chemotherapy of leishmaniasis.  相似文献   
83.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   
84.
CpG oligodeoxynucleotide (CpG ODN) cellular uptake into endosomes, the rate-limiting step of Toll-like receptor 9 (TLR9) signaling, is critical in eliciting innate immune responses. ADP-ribosylation factor 6 (ARF6) is a member of the Ras superfamily, which is critical to a wide variety of cellular events including endocytosis. Here, we found that inhibition of ARF6 by dominant mutants and siRNA impaired CpG ODN-mediated responses, whereas cells expressing the constitutively active ARF6 mutant enhanced CpG ODN-induced cytokine production. Inhibition of ARF6 impaired TLR9 trafficking into endolysosomes, thereby inhibiting proceed functional cleavage of TLR9. Additional studies showed that CpG ODN uptake was increased in ARF6-activated cells but impaired in ARF6-defective cells. Furthermore, cells pretreated with CpG ODN but not GpC ODN had increased CpG ODN uptake due to CpG ODN-induced ARF6 activity. Further studies with ARF6-defective and ARF6-activated cells demonstrated that class III phosphatidylinositol 3-kinases (PI3K) was required for downstream ARF6 regulation of CpG ODN uptake. Together, our findings demonstrate that a novel class III PI3K-ARF6 axis pathway mediates TLR9 signaling by regulating the cellular uptake of CpG ODN.  相似文献   
85.
Immune complexes composed of IgG-opsonized pathogens, particles, or proteins are phagocytosed by macrophages through Fcγ receptors (FcγRs). Macrophages primed with IFNγ or other pro-inflammatory mediators respond to FcγR engagement by secreting high levels of cytokines and nitric oxide (NO). We found that unprimed macrophages produced lower levels of NO, which required efficient calcium (Ca(2+)) flux as demonstrated by using macrophages lacking selenoprotein K, which is required for FcγR-induced Ca(2+) flux. Thus, we further investigated the signaling pathways involved in low output NO and its functional significance. Evaluation of inducible, endothelial, and neuronal nitric-oxide synthases (iNOS, eNOS, and nNOS) revealed that FcγR stimulation in unprimed macrophages caused a marked Ca(2+)-dependent increase in both total and phosphorylated nNOS and slightly elevated levels of phosphorylated eNOS. Also activated were three MAP kinases, ERK, JNK, and p38, of which ERK activation was highly dependent on Ca(2+) flux. Inhibition of ERK reduced both nNOS activation and NO secretion. Finally, Transwell experiments showed that FcγR-induced NO functioned to increase the phagocytic capacity of other macrophages and required both NOS and ERK activity. The production of NO by macrophages is conventionally attributed to iNOS, but we have revealed an iNOS-independent receptor/enzyme system in unprimed macrophages that produces low output NO. Under these conditions, FcγR engagement relies on Ca(2+)-dependent ERK phosphorylation, which in turn increases nNOS and, to a lesser extent, eNOS, both of which produce low levels of NO that function to promote phagocytosis.  相似文献   
86.
87.
Hydrogen peroxide at concentrations from 0.1 to 20 μM enhances phagocytosis and oxidative burst of murine peritoneal macrophages. The activation of these macrophage functions is paralled by prolonged hyperpolarization and a transient increase in cytoplasmic free calcium concentration. All the effects are dose- and time-dependent. The results obtained for H2O2 are compared with those for a natural activator, peptide N-formyl-methionyl-leucly-phenylalanine. The data demonstrate the ability of small doses of hydrogen peroxide to stimulate macrophages through the intracellular mechanisms of ion transduction.  相似文献   
88.
Many proteins in the living body are glycoproteins, which present glycans linked on their surface. Glycan structures reflect the degree of cell differentiation or canceration and are cell specific. These characteristics are advantageous in the development of various disease biomarkers. Glycoprotein-based biomarkers (glyco-biomarkers) are developed by utilizing the specific changes in the glycan structure on a glycoprotein secreted from the diseased cells of interest. Therefore, quantification of the altered glycan structures is the key to developing a new glyco-biomarker. Glycoscience is a relatively new area of molecular science, and recent advancement of glycotechnologies is remarkable. In the author’s institute, new glycoscience technologies have been designed to be efficiently utilized for the development of new diagnostic agents. This paper introduces a strategy for glyco-biomarker development, which was successfully applied in the development of Wisteria floribunda agglutinin-positive Mac-2 binding protein M2BPGi, a liver fibrosis marker now commercially available for clinical use.  相似文献   
89.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   
90.
新疆准噶尔盆地三个泉地区几种始新世哺乳类   总被引:3,自引:5,他引:3  
本文记述了准噶尔盆地北缘三个泉地区依希白拉组中采到的踝节类、蹠行类、全齿类和恐角类化石。根据这些化石,依希白拉组的时代可能和北美中始新世勃力吉期相当。文内,通过文献分析,认为周明镇和胡长康(1956)记述的真恐角兽的前臼齿可能产自三个泉附近的依希白拉组。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号