首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   37篇
  国内免费   17篇
  2024年   3篇
  2023年   6篇
  2022年   17篇
  2021年   24篇
  2020年   20篇
  2019年   26篇
  2018年   32篇
  2017年   8篇
  2016年   21篇
  2015年   40篇
  2014年   74篇
  2013年   42篇
  2012年   22篇
  2011年   90篇
  2010年   82篇
  2009年   57篇
  2008年   44篇
  2007年   40篇
  2006年   57篇
  2005年   55篇
  2004年   40篇
  2003年   36篇
  2002年   27篇
  2001年   15篇
  2000年   15篇
  1999年   23篇
  1998年   27篇
  1997年   8篇
  1996年   13篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   18篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   4篇
  1981年   5篇
  1980年   7篇
  1979年   7篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
排序方式: 共有1118条查询结果,搜索用时 15 毫秒
101.
Many experimental and clinical studies suggest a relationship between enhanced angiotensin II release by the angiotensin-converting enzyme (ACE) and the pathophysiology of atherosclerosis. The atherosclerosis-enhancing effects of angiotensin II are complex and incompletely understood. To identify anti-atherogenic target genes, we performed microarray gene expression profiling of the aorta during atherosclerosis prevention with the ACE inhibitor, captopril. Atherosclerosis-prone apolipoprotein E (apoE)-deficient mice were used as a model to decipher susceptible genes regulated during atherosclerosis prevention with captopril. Microarray gene expression profiling and immunohistology revealed that captopril treatment for 7 months strongly decreased the recruitment of pro-atherogenic immune cells into the aorta. Captopril-mediated inhibition of plaque-infiltrating immune cells involved down-regulation of the C-C chemokine receptor 9 (CCR9). Reduced cell migration correlated with decreased numbers of aorta-resident cells expressing the CCR9-specific chemoattractant factor, chemokine ligand 25 (CCL25). The CCL25-CCR9 axis was pro-atherogenic, because inhibition of CCR9 by RNA interference in hematopoietic progenitors of apoE-deficient mice significantly retarded the development of atherosclerosis. Analysis of coronary artery biopsy specimens of patients with coronary artery atherosclerosis undergoing bypass surgery also showed strong infiltrates of CCR9-positive cells in atherosclerotic lesions. Thus, the C-C chemokine receptor, CCR9, exerts a significant role in atherosclerosis.  相似文献   
102.
103.
104.
105.
The acid polysaccharide fraction (APSF) extracted from the mycelia of cultivated Cordyceps sinensis is water-soluble polysaccharide. In this study we evaluated the modulating effects of APSF on murine macrophage cell line RAW264.7. Phagocytotic assay by neutral red and FITC-dextran internalization showed that APSF stimulated the phagocytosis of macrophages. The nitrite levels in the culture supernatant determined using Griess reagent revealed the elevation of NO production after treatment with APSF. RT-PCR and immunocytochemistry assay indicated that APSF promoted both the mRNA and protein expressions of inducible nitric oxide synthase (iNOS). Furthermore, Western blotting demonstrated that NF-κB levels in nucleuses increased after APSF treatment, suggesting that APSF probably stimulated macrophage activities by activating the IκB-NF-κB pathway.  相似文献   
106.
Pseudallescheria boydii (Scedosporium apiospermum) is a saprophytic fungus widespread in the environment, and has recently emerged as an agent of localized as well as disseminated infections, particularly mycetoma, in immunocompromised and immunocompetent hosts. We have previously shown that highly purified α-glucan from P. boydii activates macrophages through Toll-like receptor TLR2, however, the mechanism of P. boydii recognition by macrophage is largely unknown. In this work, we investigated the role of innate immune receptors in the recognition of P. boydii. Macrophages responded to P. boydii conidia and hyphae with secretion of proinflammatory cytokines. The activation of macrophages by P. boydii conidia required functional MyD88, TLR4, and CD14, whereas stimulation by hyphae was independent of TLR4 and TLR2 signaling. Removal of peptidorhamnomannans from P. boydii conidia abolished induction of cytokines by macrophages. A fraction highly enriched in rhamnomannans was obtained and characterized by NMR, high performance TLC, and GC-MS. Preparation of rhamnomannans derived from P. boydii triggered cytokine release by macrophages, as well as MAPKs phosphorylation and IκBα degradation. Cytokine release induced by P. boydii-derived rhamnomannans was dependent on TLR4 recognition and required the presence of non-reducing end units of rhamnose of the rhamnomannan, but not O-linked oligosaccharides from the peptidorhamnomannan. These results imply that TLR4 recognizes P. boydii conidia and this recognition is at least in part due to rhamnomannans expressed on the surface of P. boydii.  相似文献   
107.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   
108.
Pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), play important roles in innate immunity of the lung. Legionella pneumophila is a bacterial respiratory pathogen that can replicate within macrophages and causes opportunistic infections. L. pneumophila possesses cytolytic activity, resulting from insertion of pores in the macrophage membrane upon contact. We examined whether pulmonary collectins play protective roles against L. pneumophila infection. SP-A and SP-D bound to L. pneumophila and its lipopolysaccharide (LPS) and inhibited the bacterial growth in a Ca2+-dependent manner. The addition of LPS in the culture blocked the inhibitory effects on L. pneumophila growth by the collectins, indicating the importance of LPS-collectin interaction. When differentiated THP-1 cells were infected with L. pneumophila in the presence of SP-A and SP-D, the number of permeable cells was significantly decreased, indicating that pulmonary collectins inhibit pore-forming activity of L. pneumophila. The number of live bacteria within the macrophages on days 1–4 after infection was significantly decreased when infection was performed in the presence of pulmonary collectins. The phagocytosis experiments with the pH-sensitive dye-labeled bacteria revealed that pulmonary collectins promoted bacterial localization to an acidic compartment. In addition, SP-A and SP-D significantly increased the number of L. pneumophila co-localized with LAMP-1. These results indicate that pulmonary collectins protect macrophages against contact-dependent cytolytic activity of L. pneumophila and suppress intracellular growth of the phagocytosed bacteria. The promotion of lysosomal fusion with Legionella-containing phagosomes constitutes a likely mechanism of L. pneumophila growth suppression by the collectins.  相似文献   
109.
110.
Recent studies have indicated that macrophage migration inhibitory factor (MIF) and Toll-like receptor (TLR) play an important role in the regulation of innate immune responses. In this study, we investigated the effect of MIF on the expression of TLR4, a receptor that recognizes lipopolysaccharide, in colon using MIF-deficient mice. TLR4 mRNA expression in the colon tissues was determined by northern blot analysis. Western blot analysis and immunohistochemistry in the colon tissues were performed to evaluate the expression of TLR4 protein. The expressions of TLR4 mRNA and protein were remarkably down-regulated in colon tissues of MIF-deficient mice compared with wild-type mice and up-regulated by treatment with recombinant MIF. Immunohistochemical study revealed the presence of TLR4–positive staining in mononuclear cells in the lamina propria and intraepithelial mononuclear cells as well as weak staining in epithelial cells and crypts in colon tissues of wild-type mice. In contrast, MIF-deficient mice did not show TLR4-positive staining in the colonic mucosa. In MIF-deficient mice injected with recombinant mouse MIF (rMIF), TLR4-positive staining cells were observed in colon tissues similar to the findings in wild-type mice. Administration of dextran sulfate sodium (DSS) up-regulated the expression of TLR4 in the colons of WT mice but not in those of MIF-deficient mice. Furthermore, pretreatment with rMIF up-regulated the expression of TLR4 in response to DSS in MIF-deficient mice. Our results suggest that MIF affects the expression of TLR4 in mouse colon under both normal and colitic conditions.An erratum to this article can be found at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号