首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   107篇
  国内免费   49篇
  2024年   9篇
  2023年   23篇
  2022年   8篇
  2021年   25篇
  2020年   39篇
  2019年   48篇
  2018年   33篇
  2017年   35篇
  2016年   43篇
  2015年   42篇
  2014年   45篇
  2013年   41篇
  2012年   22篇
  2011年   54篇
  2010年   27篇
  2009年   62篇
  2008年   69篇
  2007年   62篇
  2006年   40篇
  2005年   51篇
  2004年   44篇
  2003年   27篇
  2002年   30篇
  2001年   23篇
  2000年   23篇
  1999年   24篇
  1998年   29篇
  1997年   10篇
  1996年   17篇
  1995年   14篇
  1994年   8篇
  1993年   1篇
  1992年   9篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1072条查询结果,搜索用时 31 毫秒
11.
Synopsis One perspective emphasizing the importance of stochastic processes in determining coral reef fish assemblages implies that there is little organization in species richness, abundance structure, and spatial distribution. We examine the degree to which this perspective is correct by analyzing distribution of fishes on a collection of patch reefs (Discovery Bay, Jamaica). We ask the question whether these patches accumulate species and individuals in a manner consistent with stochastic expectations. To address this question we use two conceptual models, each permitting a different insight. One assumes that fish are distributed stochastically on patches while the other assumes presence of restrictions on fish distribution due to habitat structure. For each conceptual model we use two types of benchmark: we compare observed patterns to those predicted by theoretical models, and we also compare observed patterns to those obtained from a random reallocation of fish individuals to patches. We found that the conceptual model assuming stochastic processes appeared to provide weaker explanation of patterns than the conceptual model that includes restrictions due to habitat structure. Further, and more importantly, we found that (i) the community is shaped by a mixture of stochastic and non-stochastic mechanisms, and (ii) the stochastic assembly processes decrease in importance for species restricted to fewer microhabitat types and sites. Our study therefore indicates that patches do accumulate individuals and species in a manner consistent with stochastic expectations, however, this applies primarily to the habitat generalists (unrestricted species). By the same token, increased habitat specialization by some species imposes constraints on the stochastic model such that it eventually fails.  相似文献   
12.
P. S. Levin 《Oecologia》1994,97(1):124-133
In order to understand variability in recruitment to populations of benthic and demersal marine species, it is critical to distinguish between the contributions due to variations in larval settlement versus those caused by post-settlement mortality. In this study, fine-scale (1–2 days) temporal changes in recruit abundance were followed through an entire settlement season in a temperate demersal fish in order to determine 1) how dynamic the process of recruitment is on a daily scale, 2) whether settlement and post-settlement mortality are influenced by habitat structure and conspecific density, and 3) how the relationship between settlement and recruitment changes over time. Settlement is considered to be the arrival of new individuals from the pelagic habitat, and recruitment is defined as the number of individuals surviving arbitrary periods of time after settlement. Replicate standardized habitat units were placed in 2 spatial configurations (clumped and randomly dispersed) and monitored visually for cunner (Tautogolabrus adspersus) settlement and recruitment every 1–2 days throughout the settlement season. The process of recruitment in T. adspersus was highly variable at a fine temporal scale. Changes in the numbers of recruits present on habitat units were due to both settlement of new individuals and mortality of animals previously recruited. The relative importance of these two processes appeared to change from day to day. The magnitude of the change in recruit number did not differ between the clumped and random habitats. However, post-settlement loss was significantly greater on randomly dispersed than clumped habitats. During several sampling dates, the extent of the change in recruit abundance was correlated with the density of resident conspecifics; however, on other dates no such relationship appeared to exist. Despite the presence of significant relationships between the change in recruit number and density, there was no evidence of either density-dependent mortality or settlement. Initially, there was a strong relationship between settlement and recruitment; however, this relationship weakened over time. Within 2 months after the cessation of settlement, post-settlement loss was greater than 99%, and no correlation remained between recruitment and the initial pattern of settlement. The results of this study demonstrate that the spatial arrangement of the habitat affects the rate and intensity of post-settlement loss. Counter to much current thinking, this study suggests that in order to understand the population ecology of reef fishes, knowledge of what habitats new recruits use and how mortality varies with structural aspects of the habitats is essential.  相似文献   
13.
Synopsis Although hybridization of terrestrial and freshwater organisms has been well-studied, very little work has focused on hybridization among coral reef fish species. In the present paper, eleven examples of probable hybrids between marine angelfishes (Pomacanthidae) are reviewed. Evidence is presented which strongly suggests that the nominal speciesApolemichthys armitagei is invalid and that specimens previously identified as this species represent hybrids betweenA. trimaculatus andA. xanthurus. Of the remaining ten probable pomacanthid hybrids, five are inCentropyge (C. eibli x C. flavissimus, C. eibli x C. vrolikii, C. flavissimus x C. vrolikii, C. loricu0lus x C. potteri, andC. multifasciatus x C. venustus); one inHolacanthus (H. bermudensis x H. ciliaris), and four inPomacanthus (P. arcuatus x P. paru, P. chrysurus x P. maculosus, P. maculosus x P. semicirculatus, andP. sexstriatus x P. xanthometapon). An additional five examples of possible pomacanthid hybrids are described, two inCentropyge, two inChaetodontoplus and one inPomacanthus. Examination of hybrids may provide clues on reproductive behavior, dispersal capabilities, and phylogenetic relationships of species. More studies on hybridization in coral reef fish species, particularly those involving molecular techniques, are needed.  相似文献   
14.
Within estuarine and coastal ecosystems globally, extensive habitat degradation and loss threaten critical ecosystem functions and necessitate widescale restoration efforts. There is abundant evidence that ecological processes and species interactions can vary with habitat characteristics, which has important implications for the design and implementation of restoration efforts aimed at enhancing specific ecosystem functions and services. We conducted an experiment examining how habitat characteristics (presence; edge vs. interior) influence the communities of resident fish and mobile invertebrates on restored oyster (Crassostrea virginica) reefs. Similar to previous studies, we found that restored reefs altered community composition and augmented total abundance and biomass relative to unstructured sand habitat. Community composition and biomass also differed between the edge and interior of individual reefs as a result of species-specific patterns over small spatial scales. These patterns were only weakly linked to oyster density, suggesting that other factors that vary between edge and interior (e.g. predator access or species interactions) are likely more important for community structure on oyster reefs. Fine-scale information on resident species' use of oyster reefs will help facilitate restoration by allowing decision makers to optimize the amount of edge versus interior habitat. To improve the prediction of faunal use and benefits from habitat restoration, we recommend investigations into the mechanisms shaping edge and interior preferences on oyster reefs.  相似文献   
15.
Sea urchin overgrazing has caused widespread phase shifts from kelp forests to “urchin barrens” on many temperate reefs, reducing habitat complexity, productivity, and biodiversity. Sea urchin removal is increasingly used for kelp restoration; however, few studies have quantified the efficiency and effectiveness of different removal methods, resulting in limited understanding of their practicality. In this study, the efficiency (removal rate) and effectiveness (proportion removed) of four removal methods were evaluated in northeastern New Zealand. We compared culling or collecting sea urchins by either SCUBA or freediving in 128 small-scale plots (25 m2). We also evaluated the efficiency and effectiveness of culling in four large (1.6–2 ha) barren areas, scales relevant for restoration. On average, culling sea urchins was 1.9–4.4 times faster than collecting, and SCUBA was 1.5–3.3 times faster than freediving. Removal rates increased with sea urchin density, especially for culling on SCUBA, while freediving removal rates increased with experience. Effectiveness was lower in large-scale removals (86–93% of sea urchins ≥40 mm removed) compared to small-scale removals (98–99%), but sufficient for restoration objectives. Estimated time per area (using SCUBA culling) was similar across large-scale removals (49–57 hours/ha), despite an almost 2-fold variation in initial sea urchin densities (approximately 4–8 urchins/m2), suggesting area may better predict total removal time than simply number of sea urchins across low-density ranges. While sea urchin removal provides a rapid, feasible, and effective approach to restoring kelp in urchin barrens, restoration plans need to also address the causes of sea urchin overpopulation to ensure long-term benefits.  相似文献   
16.
Synopsis The giant humphead wrasse (Cheilinus undulatus), an inhabitant of coral reefs, is widely distributed in the tropical Indo-Pacific region. Stomach and intestinal contents of 72 specimens from the Pacific and the Red Sea revealed that this fish feeds primarily on mollusks, fishes, echinoids, and crustaceans.This article is one of several presented at the Second European Ichthyological Congress, Paris, 8-15 September 1976, to be published by Environmental Biology of Fishes.  相似文献   
17.
Reproductive strategies of coastal marine fishes in the tropics   总被引:14,自引:0,他引:14  
Synopsis A synthesis of ethnobiological, behavioral and physical oceanographic information leads to the conclusion that temperate zone models of reproductive strategy are inapplicable to many fishes of the coastal tropics. Intense predation appears to exert heavy selection pressure on fishes that spend their adult lives in coral, mangrove or tropical seagrass communities. Many exhibit spawning behaviors and spawn at times and locations that favor the transport of their pelagic eggs and pelagic larvae offshore where predation is reduced. This creates a countervailing selection pressure — the need to return the larvae to shallow water once they are ready to colonize their post-larval habitats. Accordingly, spawning is often concentrated at times of the year when prevailing winds or currents are at their weakest, thereby reducing the transport of larvae long distances from where they originated. Spawning is also concentrated in the vicinity of nearshore gyres which similarly favor the ultimate return of the larvae to their natal area. Among these species, therefore, offshore larval dispersal does not seem to be an adaptation for dispersal of the species, but rather an evolutionary response to intense predation pressure in the adult habitats. Lunar reproductive periodicity is more common among these species than has previously been recognized, and is one of the strategies employed to enhance the offshore flushing of eggs and larvae.This paper forms part of the proceedings of a mini-symposium convened at Cornell University, Ithaca, N. Y. 18–19 May 1976, entitled Patterns of Community Structure in Fishes (G. S. Helfman, ed.).Contribution No. 524, Hawaii Institute of Marine Biology, University of Hawaii, Honolulu.  相似文献   
18.
Detailed life-history observations of Dermatolepis dermatolepis are given, including the location, size and timing of a probable spawning aggregation. These observations emphasize the general rarity of the species and the importance of no-take reserves in the management of offshore islands.  相似文献   
19.
The marine tropics contain five major biogeographic regions (East Pacific, Atlantic, Indian Ocean, Indo-Australian Archipelago (IAA) and Central Pacific). These regions are separated by both hard and soft barriers. Reconstructing ancestral vicariance, we evaluate the extent of temporal concordance in vicariance events across three major barriers (Terminal Tethyan Event (TTE), Isthmus of Panama (IOP), East Pacific Barrier, EPB) and two incomplete barriers (either side of the IAA) for the Labridae, Pomacentridae and Chaetodontidae. We found a marked lack of temporal congruence within and among the three fish families in vicariance events associated with the EPB, TTE and IOP. Vicariance across hard barriers separating the Atlantic and Indo-Pacific (TTE, IOP) is temporally diffuse, with many vicariance events preceding barrier formation. In marked contrast, soft barriers either side of the IAA hotspot support tightly concordant vicariance events (2.5 Myr on Indian Ocean side; 6 Myr on Central Pacific side). Temporal concordance in vicariance points to large-scale temporally restricted gene flow during the Late Miocene and Pliocene. Despite different and often complex histories, both hard and soft barriers have comparably strong effects on the evolution of coral reef taxa.  相似文献   
20.
Larval recruitment is essential for sustaining coral communities and a fundamental tool in some interventions for reef restoration. To improve larval supply and post‐settlement survival in sexually assisted coral restoration efforts, an integrated in situ collector system, the larval cradle, was designed to collect spawned gametes then culture the resulting larvae until settled on artificial substrates. The final design of the larval cradle was cylindrical, a nylon mesh structure with a volume of 9 m3, suspended in the sea and extending vertically toward the seabed. We found three key design features that improved the efficiency of the apparatus: (1) an open area of sea surface and mesh size of less than 100 μm produced high fertilization and optimal survival (>90%), (2) a special skirt‐shaped net (3 m in diameter) with a connection hose for attaching the cradle to collect bundles from many adult colonies over a wide area and at various depths, and (3) adding short square tube pieces, called square hollow sections, as a substrate for enhancing larval settlement and survival, to a larval cradle at 4 days after spawning was optimal for uniform settlement. This system allowed not only the collection of several million eggs, but also subsequent production of several thousand settled juvenile corals, without land facilities. Our design achieved several hundred times higher survival for early life stages of Acropora tenuis compared to nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号