首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   921篇
  免费   104篇
  国内免费   49篇
  1074篇
  2024年   10篇
  2023年   23篇
  2022年   9篇
  2021年   25篇
  2020年   39篇
  2019年   48篇
  2018年   33篇
  2017年   35篇
  2016年   43篇
  2015年   42篇
  2014年   45篇
  2013年   41篇
  2012年   22篇
  2011年   54篇
  2010年   27篇
  2009年   62篇
  2008年   69篇
  2007年   62篇
  2006年   40篇
  2005年   51篇
  2004年   44篇
  2003年   27篇
  2002年   30篇
  2001年   23篇
  2000年   23篇
  1999年   24篇
  1998年   29篇
  1997年   10篇
  1996年   17篇
  1995年   14篇
  1994年   8篇
  1993年   1篇
  1992年   9篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1074条查询结果,搜索用时 15 毫秒
981.
Ocean acidification erodes crucial auditory behaviour in a marine fish   总被引:4,自引:0,他引:4  
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO(2)-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 μatm pCO(2). Juveniles from ambient CO(2)-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO(2)-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.  相似文献   
982.
Adult bull sharks Carcharhinus leucas were monitored with electronic tags to investigate horizontal and vertical movements in the Atlantic and Pacific Oceans. In both locations, C. leucas showed some fidelity to specific coastal areas with only limited horizontal movements away from the tagging sites after tag attachment. Fish tagged in the Bahamas were detected mostly in the upper 20 m of the water column in water 25-26° C, whereas C. leucas tagged in Fiji spent most of their time below 20 m in water usually >26° C. The results highlight the importance of coastal inshore habitats for this species.  相似文献   
983.
Endemic species on islands are considered at risk of extinction for several reasons, including limited dispersal abilities, small population sizes, and low genetic diversity. We used mitochondrial DNA (D-Loop) and 17 microsatellite loci to explore the evolutionary relationship between an endemic anemonefish, Amphiprion mccullochi (restricted to isolated locations in subtropical eastern Australia) and its more widespread sister species, A. akindynos. A mitochondrial DNA (mtDNA) phylogram showed reciprocal monophyly was lacking for the two species, with two supported groups, each containing representatives of both species, but no shared haplotypes and up to 12 species, but not location-specific management units (MUs). Population genetic analyses suggested evolutionary connectivity among samples of each species (mtDNA), while ecological connectivity was only evident among populations of the endemic, A. mccullochi. This suggests higher dispersal between endemic anemonefish populations at both evolutionary and ecological timeframes, despite separation by hundreds of kilometers. The complex mtDNA structure results from historical hybridization and introgression in the evolutionary past of these species, validated by msat analyses (NEWHYBRIDS, STRUCTURE, and DAPC). Both species had high genetic diversities (mtDNA h > 0.90, π = 4.0%; msat genetic diversity, gd > 0.670). While high gd and connectivity reduce extinction risk, identifying and protecting populations implicated in generating reticulate structure among these species should be a conservation priority.  相似文献   
984.
In 1998, seawater temperature anomalies led to unprecedented levels of coral bleaching on reefs worldwide. We studied the direct effects of this thermal event on benthic communities and its indirect effects on their associated coral reef fish communities at a group of remote reefs off NW Australia. Long‐term monitoring of benthic and fish assemblages on these reefs allowed us to compare the responses of these communities to coral bleaching using a data series that included 4 years before, and 6 years following, this bleaching event. While bleaching mortality was evident to >30 m depth, it was patchy among the shallower survey sites with decreases in live coral cover ranging from 30% to 90% across seven surveyed locations Within 2 years of the bleaching, hard coral recovery had begun at all sites and by 2003 reef‐wide coral cover had increased to ~39% of its preimpact levels. We exploited this pattern of differential survival of corals among sites, the associated changes in these benthic communities, and their patterns of recovery, to better understand links between benthic community dynamics and their associated fish communities. Temporal changes in the resident fish communities strongly reflected the differential shifts in the benthic communities, but were lagged by 12–18 months. Five years after the bleaching event, the fish communities on five of the seven surveyed locations showed evidence of recovery, however, none had regained their preimpact structures. Analyses of these communities by taxonomic family revealed a range of responses to the disturbance reflective of their life‐histories and trophic and habitat affiliations. The slow but recognizable recovery of this isolated reef system has parallels with other relatively isolated systems that displayed resilience to the 1998 bleaching event, e.g. the Chagos archipelago, but it also contrasts sharply with low levels of resilience documented in other isolated reef systems subject to the same disturbance, e.g. the Seychelles. In this context, our results highlight the significant knowledge gaps remaining in understanding the resilience of these ecosystems to disturbance.  相似文献   
985.
Habitat degradation not only disrupts habitat‐forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage‐released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement‐stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four‐times better than non‐neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.  相似文献   
986.
Deep-water Oculina coral reefs, which are similar in structure and development to deep-water Lophelia reefs, stretch over 167 km (90 nmi) at depths of 70–100 m along the eastern Florida shelf of the United States. These consist of numerous pinnacles and ridges, 3–35 m in height. Coral growth rates average 16.1 mm yr–1 and biodiversity is very rich. Extensive areas of Oculina rubble may be due to human impacts (e.g. fish trawling and dredging, anchoring, bottom longlines) and natural processes such as bioerosion and episodic die-off. Early in the 1970s, the reefs were teeming with fish. By the early 1990s, both commercial and recreational fisheries, including scallop, shrimp, grouper, snapper and amberjack, had taken a toll on the reefs and especially on populations of grouper and snapper. A 315 km2 (92 nmi2) area was designated the Oculina Habitat of Particular Concern (HAPC) in 1984, prohibiting trawling, dredging, bottom longlines and anchoring, and legislation was enacted in 2000 for expansion of the Oculina HAPC to 1029 km2 (300 nmi2). The United States Coast Guard has been charged with surveillance and enforcement of the ban on bottom fishing and trawling. The primary difficulties in protecting these reefs and other deep-water Marine Protected Areas are their remoteness and time required to engage an enforcement vessel. Education regarding the nature and importance of these rich resources is important for better self regulation and surveillance by the fishing community. Only by bringing deep-water reefs to the public, the fishing community, and enforcement agencies, through video, photos, and education will there be better understanding and acceptance for the need of protection for these unseen resources. This paper reviews the current knowledge on the deep-water Oculina reefs, including the biology, geology, human impacts, and history of conservation and management.  相似文献   
987.
The previously sub‐dominant native marine macrophyte Caulerpa filiformis is now dominant on many sub‐tidal rocky reefs in New South Wales (NSW), Australia and is expanding its distribution. As C. filiformis is highly chemically defended and structurally different to co‐occurring habitat‐forming macrophytes, two key attributes that govern fish assemblages, we hypothesized that fish assemblages, particularly herbivorous fishes, would be different at sites where C. filiformis occurred from where it was previously absent and within sites, fish community structure would be correlated to the cover of C. filiformis. We investigated these hypotheses by determining reef‐associated fish assemblage attributes (assemblage structure, species richness, total abundance, Shannon‐Weiner diversity, abundance of herbivorous species) along transects within sites where C. filiformis was present and absent. Surprisingly, despite large patches and very high densities of C. filiformis on the reefs we sampled, at larger spatial scales (i.e., among sites) no fish assemblage metrics differed between sites with large stands of C. filiformis and sites without the alga. Moreover the abundance of one dominant herbivore, the rock cale Aplodactylus lophodon, was greater at sites within large beds of C. filiformis. At smaller spatial scales, however, i.e. within sites where C. filiformis was present, fish assemblages did vary as a function of C. filiformis cover along transects, although this was not consistent across sampling times. Overall, our results suggest that the potential effects of the spread of this alga on faunal communities warrants further investigation.  相似文献   
988.
Approximately one quarter of zooxanthellate coral species have a depth distribution from shallow waters (<30 m) down to mesophotic depths of 30-60 m. The deeper populations of such species are less likely to be affected by certain environmental perturbations, including high temperature/high irradiance causing coral bleaching. This has led to the hypothesis that deep populations may serve as refuges and a source of recruits for shallow reef habitats. The extent of vertical connectivity of reef coral species, however, is largely unquantified. Using 10 coral host microsatellite loci and sequences of the host mtDNA putative control region, as well as ribosomal DNA (rDNA) ITS2 sequences of the coral's algal endosymbionts (Symbiodinium), we examine population structure, connectivity and symbiont specificity in the brooding coral Seriatopora hystrix across a depth profile in both northwest (Scott Reef) and northeast Australia (Yonge Reef). Strong genetic structuring over depth was observed in both regions based on the microsatellite loci; however, Yonge Reef exhibited an additional partitioning of mtDNA lineages (associated with specific symbiont ITS2 types), whereas Scott Reef was dominated by a single mtDNA lineage (with no apparent host-symbiont specificity). Evidence for recruitment of larvae of deep water origin into shallow habitats was found at Scott Reef, suggesting that recovery of shallow water habitats may be aided by migration from deep water refuges. Conversely, no migration from the genetically divergent deep slope populations into the shallow habitats was evident at Yonge Reef, making recovery of shallow habitats from deeper waters at this location highly unlikely.  相似文献   
989.
The genetic structure of spatially separated populations of the Dory snapper, Lutjanus fulviflamma, was investigated in seven areas along the East African coast and one area in the Comoros archipelago in the western Indian Ocean, using amplified fragment length polymorphism (AFLP). Phylogenetic and multidimensional scaling analyses did not show any clear clustering of individuals into the spatially separated populations. The analysis of molecular variance clearly showed that the variation was partitioned within populations and not between populations, leading to low genetic differentiation among populations. No clear relationship between genetic distance and geographic distance between populations was observed. These observations suggest that populations of Lutjanus fulviflamma have an open structure and are possibly genetically connected on a large geographic scale in the western Indian Ocean.  相似文献   
990.
The species composition and distribution of marine plants on the fringing reef of Secoko Island were studied before and after the mass coral mortality in 1998. The study showed that changes in the bottom communities that occurred after bleaching of corals were caused by the presumed development of marine plants substituting reef-building corals on the bottom. The number of algal species grew from 211 to 345. The projective cover (PC) of hard substrate with macroalgae increased: in 1998, it was 1–10% in the subtidal zone and 20–50% in the intertidal zone, while in 2002 through 2005, the PC reached 71% in the subtidal and 40–85% in the intertidal zone. It is assumed that the phase of the “plant reef” on Sesoko Island is a temporary event, and that the coral reef can recover within several decades, unless a natural catastrophe occurs again.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号