首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   18篇
  国内免费   16篇
  732篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   31篇
  2018年   27篇
  2017年   21篇
  2016年   14篇
  2015年   11篇
  2014年   84篇
  2013年   75篇
  2012年   47篇
  2011年   70篇
  2010年   50篇
  2009年   37篇
  2008年   41篇
  2007年   42篇
  2006年   39篇
  2005年   28篇
  2004年   13篇
  2003年   8篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有732条查询结果,搜索用时 0 毫秒
31.
Amyloid-β (Aβ) peptides can exist in distinct forms including monomers, oligomers and fibrils, consisting of increased numbers of monomeric units. Among these, Aβ oligomers are implicated as the primary toxic species as pointed by multiple lines of evidence. It has been suggested that toxicity could be rendered by the soluble higher-molecular-weight (high-n) Aβ oligomers. Yet, the most culpable form in the pathogenesis of Alzheimer’s disease (AD) remains elusive. Moreover, the potential interaction among the insoluble fibrils that have been excluded from the responsible aggregates in AD development, Aβ monomers and high-n oligomers is undetermined. Here, we report that insoluble Aβ fibrillar seeds can interact with Aβ monomers at the stoichiometry of 1:2 (namely, each Aβ molecule of seed can bind to two Aβ monomers at a time) facilitating the fibrillization by omitting the otherwise mandatory formation of the toxic high-n oligomers during the fibril maturation. As a result, the addition of exogenous Aβ fibrillar seeds is seen to rescue neuronal cells from Aβ cytotoxicity presumably exerted by high-n oligomers, suggesting an unexpected protective role of Aβ fibrillar seeds.  相似文献   
32.
Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.  相似文献   
33.
In this study, tri‐functional immunofluorescent probes (Ce6–IgG–QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second‐generation photosensitizer, Ce6, was first coupled with anti‐IgG antibody using the EDC/NHS cross‐linking method to construct the photosensitive immunoconjugate Ce6–IgG. Then, a complex of Ce6–IgG–QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6–IgG to water soluble CdTe QDs. The as‐manufactured Ce6–IgG–QDs maintained the bio‐activities of both the antigen–antibody‐based tumour targeting effects of IgG and the photodynamic‐related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti‐human epidermal growth factor receptor (anti‐EGFR antibody, N‐terminus), Ce6–IgG–QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6–IgG–QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody‐based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
34.
In recent years, indole-indazolyl hydrazide-hydrazone derivatives with strong cell growth inhibition and apoptosis induction characteristics are being strongly screened for their cancer chemo-preventive potential. In the present study, N-methyl and N,N-dimethyl bis(indolyl)hydrazide-hydrazone analog derivatives were designed, synthesized and allowed to evaluate for their anti-proliferative and apoptosis induction potential against cervical (HeLa), breast (MCF-7 and MDA-MB-231) and lung (A549) cancer cell lines relative to normal HEK293 cells. The MTT assay in conjunction with mitochondrial potential assays and the trypan blue dye exclusion were employed to ascertain the effects of the derivatives on the cancer cells. Further, mechanistic studies were conducted on compound 14a to understand the biochemical mechanisms and functional interactions with various signaling pathways triggered in HeLa and MCF-7 cells. Compound 14a induced apoptosis via caspase independent pathway through the participation of mitogen-activated protein kinases (MAPK) such as extracellular signal related kinase (ERK) and p38 as well as p53 pathways. It originates the activation of pro-apoptotic proteins such as Bak and Mcl-1s and also strongly induced the generation of reactive oxygen species. In downstream signaling pathway, activated p53 protein interacted with MAPK pathways, including SAPK/c-Jun N-terminal protein kinase (JNK), p38 and ERK kinases resulting in apoptotic cell death. The involvement of MAPK cascades such as p38, ERK and p38 on compound 14a induced apoptotic cell death was evidenced by the fact that the inclusion of specific inhibitors of p38, ERK1/2 and JNK MAPK (SB2035809, PD98059 and SP600125) prevented the compound 14a towards induced apoptosis. The results clearly showed that MAP kinase cascades were crucial for apoptotic response in compound 14a induced cellular killing and were dependent on p53 activity. Based on the results, compound 14a was identified as a promising candidate for cancer therapeutics and these findings furnish a basis for further in vivo experiments on anti-proliferative activity.  相似文献   
35.
Ren QG  Liao XM  Chen XQ  Liu GP  Wang JZ 《FEBS letters》2007,581(7):1521-1528
Dysfunction of proteasome contributes to the accumulation of the abnormally hyperphosphorylated tau in Alzheimer's disease. However, whether tau hyperphosphorylation and accumulation affect the activity of proteasome is elusive. Here we found that a moderate tau phosphorylation activated the trypsin-like activity of proteasome, whereas further phosphorylation of tau inhibited the activity of the protease in HEK293 cells stably expressing tau441. Furthermore, tau hyperphosphorylation could partially reverse lactacystin-induced inhibition of proteasome. These results suggest that phosphorylation of tau plays a dual role in modulating the activity of proteasome.  相似文献   
36.
Inositol hexaphosphate (IP6) is a natural constituent found in almost all cereals and legumes. It is known to cause numerous antiangiogenic manifestations. Notwithstanding its great potential, it is underutilized due to the chelation and rapid excretion from the body. Jacalin is another natural constituent obtained from seeds of jackfruit and can target disaccharides overexpressed in tumor cells. The current study was in-quested to develop and evaluate a surface-modified gold nanoparticulate system containing IP6 and jacalin which may maximize the apoptotic effect of IP6 against HCT-15 cell lines. IP6 loaded jacalin-pectin-gold nanoparticles (IJP-GNPs) were developed through reduction followed by incubation method. The developed formulation was tested for various in vitro and in silico studies to investigate its potential. HCT-15 cells when exposed to IJP-GNP resulted in significant apoptotic effects in dose as well as time-dependent manner, as measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, micronucleus, and reactive oxygen species assay. IJP-GNP displayed cell cycle arrest at the G0/G1 phase. To further explore the mechanism of chemoprevention, in silico studies were performed. The docking results revealed that the interactive behavior of IP6, P-GNP, and jacalin could target and inhibit the tumor formation activity, supported by in vitro studies. Taken together, all the findings suggested that IP6 loaded nanoparticles may increase the hope of future drug delivery strategy for targeting colon cancer.  相似文献   
37.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   
38.
α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4 h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H2O2-/docetaxel-induced cytotoxicity.  相似文献   
39.
This article deals with the synthesis of 4-(2-hydroxyquinolin-3-yl)-6-phenyl-5,6-dihydropyrimidin derivatives (2a–f), on condensation with various aromatic aldehydes and ketones in aqueous ethanolic NaOH solution yielding the corresponding chalcones (3). These chalcones were further reacted with thiourea/urea in the presence of a base, which led to the formation of the titled derivatives (2a–f). The newly synthesized heterocyles were characterized by elemental analysis, FTIR, 1HNMR, and electronic and mass spectral data. The compounds (2a and 2b) were evulated for in vitro cyctotoxicity against human breast adenocarcinoma cell (MCF-7). In MTT cytotoxicity studies, both quinolinde derivatives were found most effective. The binding interaction behavior of the compound (2a) and (2d) with calf thymus-DNA (CT-DNA) was studied by electronic spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum underwent bathochromic and hypochromic shifts. The binding constant (Kb) observed 4.3 × 105 M?1 for (2a), and 3.8 × 105 M?1 for (2d) suggested that compound (2a) binds more strongly with base pairs than (2d).  相似文献   
40.
Abstract

In this work, we have synthesized a few novel mononuclear complexes of Cu(II), Co(II), Ni(II) and Zn(II) using a pyrazolone-derived Schiff base ligand. They were characterized by spectroscopic and analytical methods. The elemental analyses, UV-Vis, magnetic moment values and molar conductance of the complexes reveal that the complexes adopt an octahedral arrangement around the central metal ions. The interaction of complexes with CT-DNA was studied by absorption spectral titration and viscosity measurements. The observed data show that the complexes bind with CT-DNA via an intercalation mode. Efficient pUC18 DNA cleavage ability of the synthesized compounds was explored by gel electrophoresis. The antimicrobial activity of these compounds against a set of bacterial and fungal strains reveals that the complexes exhibit better activity than the free ligand. Moreover, all the complexes were evaluated against two cancer (HeLa and HepG2) and one normal (NHDF) cell lines. The data were compared with cisplatin. Anti–inflammatory activity has been experimentally validated which proves that theoretical predictions concur with the experimental results. In addition, molecular docking studies have been performed to consider the nature of binding mode and binding affinity of these compounds with DNA (1BNA) and protein (3hb5). These studies reveal that the mode of binding is intercalation and the complexes have higher binding energy scores than the free ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号