首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72700篇
  免费   5035篇
  国内免费   2642篇
  80377篇
  2024年   138篇
  2023年   1219篇
  2022年   1813篇
  2021年   2415篇
  2020年   2354篇
  2019年   3268篇
  2018年   2841篇
  2017年   2035篇
  2016年   2012篇
  2015年   2515篇
  2014年   4746篇
  2013年   5903篇
  2012年   3663篇
  2011年   4704篇
  2010年   3581篇
  2009年   3886篇
  2008年   3956篇
  2007年   3982篇
  2006年   3536篇
  2005年   3059篇
  2004年   2709篇
  2003年   2156篇
  2002年   1932篇
  2001年   1230篇
  2000年   953篇
  1999年   974篇
  1998年   978篇
  1997年   766篇
  1996年   686篇
  1995年   613篇
  1994年   566篇
  1993年   431篇
  1992年   432篇
  1991年   358篇
  1990年   294篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   456篇
  1983年   337篇
  1982年   351篇
  1981年   266篇
  1980年   202篇
  1979年   196篇
  1978年   173篇
  1977年   143篇
  1976年   116篇
  1975年   110篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
该研究旨在探讨苯并(a)芘[Benzo(a)pyrene,B(a)P]对孕早期小鼠卵巢黄体功能的影响及机制.体内模型:将昆明小鼠每晚按雌雄3∶1的比例合笼,次晨查得阴栓记为孕第1天(d1);将其随机分为对照组和B(a)P处理组,每日早晨称重后以0.1 mL/10 g动物体质量灌胃给予0.2 mg/(kg·d)的B(a)...  相似文献   
992.
A series of 1,2,3-triazole analogues as novel fat mass and obesity-associated protein (FTO) inhibitors were synthesised in this study. Among all 1,2,3-triazoles, compound C6 exhibited the most robust inhibition of FTO with an IC50 value of 780 nM. It displayed the potent antiproliferative activity against KYSE-150, KYSE-270, TE-1, KYSE-510, and EC109 cell lines with IC50 value of 2.17, 1.35, 0.95, 4.15, and 0.83 μM, respectively. In addition, C6 arrested the cell cycle at G2 phase against TE-1 and EC109 cells in a concentration-dependent manner. Analysis of cellular mechanisms demonstrated that C6 concentration-dependently regulated epithelial mesenchymal transition (EMT) pathway and PI3K/AKT pathway against TE-1 and EC109 cells. Molecular docking studies that C6 formed important hydrogen-bond interaction with Lys107, Asn110, Tyr108, and Leu109 of FTO. These findings suggested that C6 as a novel FTO inhibitor and orally antitumor agent deserves further investigation to treat esophageal cancer.  相似文献   
993.
Pseudomonas syringae pv. actinidiae(Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we find that the nucleotidebinding leucine-rich repeat receptor(NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana(Nb) recognizes Hop Z5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the...  相似文献   
994.
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.  相似文献   
995.
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.  相似文献   
996.
The centrosome linker component C‐Nap1 (encoded by CEP250) anchors filaments to centrioles that provide centrosome cohesion by connecting the two centrosomes of an interphase cell into a single microtubule organizing unit. The role of the centrosome linker during development of an animal remains enigmatic. Here, we show that male CEP250 −/− mice are sterile because sperm production is abolished. Premature centrosome separation means that germ stem cells in CEP250 −/− mice fail to establish an E‐cadherin polarity mark and are unable to maintain the older mother centrosome on the basal site of the seminiferous tubules. This failure prompts premature stem cell differentiation in expense of germ stem cell expansion. The concomitant induction of apoptosis triggers the complete depletion of germ stem cells and consequently infertility. Our study reveals a role for centrosome cohesion in asymmetric cell division, stem cell maintenance, and fertility.  相似文献   
997.
Congenital heart disease (CHD) is the most common birth defect, affecting approximately 1% of live births. Genetic and environmental factors are leading factors to CHD, but the mechanism of CHD pathogenesis remains unclear. Circular RNAs (circRNAs) are kinds of endogenous non‐coding RNAs (ncRNAs) involved in a variety of physiological and pathological processes, especially in heart diseases. In this study, three significant differently expressed circRNA between maternal embryonic day (E) E13 and E17 was found by microarray assay. Among them, the content of circ‐RCCD increases with the development of heart and was enriched in primary cardiomyocytes of different species, which arouses our attention. Functional experiments revealed that inhibition of circ‐RCCD dramatically suppressed the formation of beating cell clusters, the fluorescence intensity of cardiac differentiation marker MF20, and the expression of the myocardial‐specific markers CTnT, Mef2c, and GATA4. Next, we found that circ‐RCCD was involved in cardiomyocyte differentiation through negative regulation of MyD88 expression. Further experiments proved that circ‐RCCD inhibited MyD88 levels by recruiting YY1 to the promoter of MyD88; circ‐RCCD inhibited nuclear translocation of YY1. These results reported that circ‐RCCD promoted cardiomyocyte differentiation by recruiting YY1 to the promoter of MyD88. And, this study provided a potential role and molecular mechanism of circ‐RCCD as a target for the treatment of CHD.  相似文献   
998.
999.
1000.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号