首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5850篇
  免费   461篇
  国内免费   136篇
  2024年   5篇
  2023年   113篇
  2022年   152篇
  2021年   135篇
  2020年   149篇
  2019年   216篇
  2018年   247篇
  2017年   202篇
  2016年   213篇
  2015年   262篇
  2014年   494篇
  2013年   549篇
  2012年   371篇
  2011年   510篇
  2010年   472篇
  2009年   388篇
  2008年   324篇
  2007年   301篇
  2006年   324篇
  2005年   296篇
  2004年   168篇
  2003年   138篇
  2002年   83篇
  2001年   53篇
  2000年   32篇
  1999年   35篇
  1998年   11篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   12篇
  1993年   3篇
  1992年   8篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1985年   33篇
  1984年   23篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   10篇
  1973年   7篇
排序方式: 共有6447条查询结果,搜索用时 171 毫秒
161.
In the present research, variability in essential oil (EO) composition of five Dorema aucheri populations collected from natural habitats in different regions of Iran, were investigated. The EO content of populations varied from 0.28 to 0.68%. According to gas chromatography/mass spectrometry analysis, β‐caryophyllene (7.17 – 35.73%), thymol (23.45 – 29.64%), β‐gurjunene (2.58 – 5.89%), carvacrol (1.32 – 2.67%) and cuparene (1.97 – 2.98%) were the major components. Hierarchical cluster, principal component and canonical correspondence analyses classified the studied populations into three groups based on major EO components. The environmental parameters of the collected sites were also evaluated. According to the results, it might be suggested that sandy soils with high mean annual precipitation were major environmental factors influencing the amount of β‐caryophyllene, while thymol, cuparene and caryophyllen oxide increased in silty and clay soils. Finally, the population collected in high altitudes and clay soils had higher amount of β‐gurjunene.  相似文献   
162.
Haizhu Lin  Chunhui Deng 《Proteomics》2016,16(21):2733-2741
In this work, we first immobilized tin(IV) ion on polydopamine‐coated magnetic graphene (magG@PDA) to synthesize Sn4+‐immobilized magG@PDA (magG@PDA‐Sn4+) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3O4, good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn4+ and phosphopeptides. The enrichment performance of magG@PDA‐Sn4+ toward phosphopeptides from digested β‐casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA‐Ti4+. The results showed high selectivity and sensitivity of the Sn4+‐IMAC material toward phosphopeptides, as good as the Ti4+‐IMAC material. Finally, magG@PDA‐Sn4+ was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI‐TOF MS and nano‐LC‐ESI‐MS/MS. The results indicated that the as‐synthesized Sn4+‐IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti4+‐IMAC material and expand the phosphopeptide coverage enriched by the single Ti4+‐IMAC material, demonstrating the broad application prospects of magG@PDA‐Sn4+ in phosphoproteome research.  相似文献   
163.
164.
The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought‐resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought‐resistant species and may benefit future agricultural production.  相似文献   
165.
Phosphorylation is the most widely studied posttranslational modification. Its role within the cell has been the focus of numerous large‐scale studies. Recently there is growing evidence on the biological significance of extracellular phosphorylation. The analysis of these phosphopeptides is complicated by the abundance of glycosylation in the extracellular space, since glycopeptides are also enriched by the methods used for phosphopeptide isolation. Thus, we optimized IMAC for phosphorylation analysis of secreted proteins, specifically in human serum. Selectivity and efficiency of different enrichment conditions used in earlier large‐scale phosphoproteomic studies were evaluated. We found that minimizing hydrophilic interactions in the enrichment allowed selective phosphopeptide isolation. Using a two‐step IMAC enrichment protocol under these conditions led to the identification of ~100 phosphorylation sites from the tryptic digest of as little as 40 μL human serum.  相似文献   
166.
167.
168.
Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal‐contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation‐sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal‐contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal‐contaminated site compared to uncontaminated populations. Other genotypes from a different metal‐contaminated site within the same region appear to be recalcitrant to metal‐induced DNA alterations even ≥30 years of tree life exposure to nickel and copper . MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal‐contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.  相似文献   
169.
The biopharmaceutical industry has become increasingly focused on developing biosimilars as less expensive therapeutic products. As a consequence, the regulatory approval of 2 antibody-drug conjugates (ADCs), Kadcyla® and Adcetris® has led to the development of biosimilar versions by companies located worldwide. Because of the increased complexity of ADC samples that results from the heterogeneity of conjugation, it is imperative that close attention be paid to the critical quality attributes (CQAs) that stem from the conjugation process during ADC biosimilar development process. A combination of physicochemical, immunological, and biological methods are warranted in order to demonstrate the identity, purity, concentration, and activity (potency or strength) of ADC samples. As described here, we performed extensive characterization of a lysine conjugated ADC, ado-trastuzumab emtansine, and compared its CQAs between the reference product (Kadcyla®) and a candidate biosimilar. Primary amino acid sequences, drug-to-antibody ratios (DARs), conjugation sites and site occupancy data were acquired and compared by LC/MS methods. Furthermore, thermal stability, free drug content, and impurities were analyzed to further determine the comparability of the 2 ADCs. Finally, biological activities were compared between Kadcyla® and biosimilar ADCs using a cytotoxic activity assay and a HER2 binding assay. The in-depth characterization helps to establish product CQAs, and is vital for ADC biosimilars development to ensure their comparability with the reference product, as well as product safety.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号