首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16092篇
  免费   1186篇
  国内免费   784篇
  18062篇
  2023年   379篇
  2022年   536篇
  2021年   523篇
  2020年   512篇
  2019年   655篇
  2018年   693篇
  2017年   550篇
  2016年   495篇
  2015年   533篇
  2014年   1106篇
  2013年   1189篇
  2012年   824篇
  2011年   1162篇
  2010年   909篇
  2009年   834篇
  2008年   810篇
  2007年   839篇
  2006年   688篇
  2005年   632篇
  2004年   438篇
  2003年   380篇
  2002年   278篇
  2001年   178篇
  2000年   183篇
  1999年   198篇
  1998年   127篇
  1997年   124篇
  1996年   103篇
  1995年   99篇
  1994年   106篇
  1993年   103篇
  1992年   97篇
  1991年   98篇
  1990年   65篇
  1989年   64篇
  1988年   55篇
  1987年   85篇
  1985年   135篇
  1984年   160篇
  1983年   126篇
  1982年   124篇
  1981年   114篇
  1980年   117篇
  1979年   105篇
  1978年   105篇
  1977年   80篇
  1976年   61篇
  1975年   54篇
  1974年   62篇
  1973年   52篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Eukaryotic protein kinases are typically strictly controlled by second messenger binding, protein/protein interactions, dephosphorylations or similar processes. None of these regulatory mechanisms is known to work for protein kinase CK2 (former name “casein kinase 2”), an acidophilic and constitutively active eukaryotic protein kinase. CK2 predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) complexed to a dimer of non-catalytic subunits (CK2β). One model of CK2 regulation was proposed several times independently by theoretical docking of the first CK2 holoenzyme structure. According to this model, the CK2 holoenzyme forms autoinhibitory aggregates correlated with trans-autophosphorylation and driven by the down-regulatory affinity between an acidic loop of CK2β and the positively charged substrate binding region of CK2α from a neighboring CK2 heterotetramer. Circular trimeric aggregates in which one-half of the CK2α chains show the predicted inhibitory proximity between those regions were detected within the crystal packing of the human CK2 holoenzyme. Here, we present further in vitro support of the “regulation-by-aggregation” model by an alternative crystal form in which CK2 tetramers are arranged as approximately linear aggregates coinciding essentially with the early predictions. In this assembly, the substrate binding region of every CK2α chain is blocked by a CK2β acidic loop from a neighboring tetramer. We found these crystals with CK2Andante that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2Andante to form aggregates with completely blocked active sites may contribute to this phenotype.  相似文献   
992.
Oligomers formed by amyloid β (Aβ) peptide are widely believed to be the main neurotoxic agent in Alzheimer's disease. Studies discovered a broad variety of oligomeric forms, which display different levels of toxicity. Some of these forms may further assemble into mature fibrils, while other might be off-pathway from conversion to fibrils and assemble into alternative forms. To better understand a relationship between the structure and toxicity of Aβ oligomers, we require systematic characterization and classification of all possible forms, facilitating rational design of the beneficial modifiers of their activity. In previous ion mobility analysis of Aβ1–40 oligomers, we have detected the coexistence of two alternative structural forms (compact and extended) in a pool of low-order Aβ1–40 oligomers. These forms may represent two pathways of the oligomer evolution, leading either to fibrils or to off-pathway oligomers, which are potential candidates for the neurotoxic species. Here, we have analyzed the impact of incubation time, the presence of selected metal ions and the effect of a series of point mutations on mutual population of alternative forms. We have shown that a salt bridge D23K28 provides stabilization of the compact form whereas G25 is required for the existence of the extended form. We have found that binding of metal ions also stabilizes the compact form. These results improve our understanding of the possible molecular mechanism of the bifurcation of structural evolution of non-monomeric Aβ species into an off-fibril pathway, ultimately leading to the formation of potentially neurotoxic species.  相似文献   
993.
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   
994.

Background

Newer strategies for augmenting immune responses of pharmacologically active glucans may serve to improve the medicinal potential of these biomolecules. With this aim, the present work was focused on generating targeted high molecular size glucan particles with magnified immune response activity.

Methods

Heteroglucans were conjugated with PAMAM dendrimers using a Schiff base reductive amination reaction to generate a polytethered molecule with multiple glucan motifs. The modulated construct was characterized by FTIR, TEM, 1H NMR and dynamic light scattering (DLS) methods. Effects of conjugated glucans were examined in RAW 264.7 macrophage cells as well as in S-180 murine tumor models.

Results

Dendrimer-conjugated glucans were found to exhibit a two-fold increase in immune stimulation in comparison to unconjugated glucans. This may be corroborated by the predominant enhancement in immunological functions such as nitric oxide production, ROS generation and immune directed tumor inhibition in murine models. Immune cell surface markers (CD4, CD8, CD19, MHC-II) and cytokine levels were also found to be highly up-regulated in the splenocytes of mice subjected to particulate glucan administration. Our study also demonstrated that conjugated glucan treatment to RAW 264.7 cells strongly enhanced the phosphorylation of two downstream signalling molecules of the mitogen activated protein kinase (MAPKs) family: p38 and MEK1/2 relative to single glucans thereby relating molecular mechanisms with enhanced immune stimulation.

Conclusions and general significance

The results obtained thus support that particulate format of soluble heteroglucan will thereby improve its functionality and identify leads in therapeutic competence.  相似文献   
995.
996.
To evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids. Furthermore, the LmAPX sequence was sub-cloned into prokaryotic expression vector pET28a and the recombinant proteins had a high expression level in Escherichia coli. Results from a southern blot analysis indicated that three inserts of this gene existed in the tobacco genome encoding LmAPX. Compared with the control plants (wild-type and empty vector control), the transgenic plants expressing the LmAPX gene exhibited lower amount of hydrogen peroxide (H2O2) and relatively higher values of ascorbate peroxidase activity, proline content, and net photosynthetic rate (Pn) under the same salt stress. These results suggested that overexpression of the LmAPX gene could decrease ROS production caused by salt stress and protect plants from oxidative stress.  相似文献   
997.
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain‐derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical–striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn‐exposed non‐human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn‐exposure‐related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.

  相似文献   

998.
Knowledge on how odorants are transported through the nasal cavity to the olfactory epithelium is limited. One facet of this is how the sniffing behavior affects the abundance of odorants transferred to the olfactory cleft and in turn influences odor perception. A novel system that couples an online mass spectrometer with an odorant pulse delivery olfactometer was employed to characterize intranasal odorant concentrations of butane‐2,3‐dione (or butanedione, commonly known as diacetyl) at the interior naris and the olfactory cleft. Volunteers (n=12) were asked to perform different modes of sniffing in relation to the sniff intensity that were categorized as ‘normal’, ‘rapid’ and ‘forced’. The highest concentrations of butanedione at both positions in the nose were observed during normal sniffing, with the lowest concentrations correlating with periods of forced sniffs. This corresponded to the panelists' ratings that normal sniffing elicited the highest odor intensities. These feasibility assessments pave the way for more in‐depth analyses with a variety of odorants of different chemical classes at various intranasal positions, to investigate the passage and uptake of odorants within the nasal cavity.  相似文献   
999.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号